

**Township of Puslinch** 

### TECHNICAL MEMORANDUM NO.2 DEVELOPMENT AND ASSESSMENT OF WATER AND SEWAGE SERVICING OPTIONS



5935 Airport Road, Suite 500 Mississauga, Ontario L4V 1W5 Canada Phone: (905) 695-1005 Fax: (905) 695-0525 www.cima.ca

FINAL May 8, 2018

T000866A

# **Table of Contents**

| 1. | Int       | roduction                                                    | 1  |
|----|-----------|--------------------------------------------------------------|----|
|    | 1.1       | Background                                                   | 1  |
|    | 1.2       | Purpose of this Technical Memorandum                         | 1  |
| 2. | Wa        | ter and Wastewater Design Basis                              | 2  |
|    | 2.1       | Water System – Design Basis                                  | 2  |
|    |           | 2.1.1 Preliminary Projected Water Demands                    | 3  |
|    | 2.2       | Wastewater System – Design Basis                             | 4  |
|    |           | 2.2.1 Projected Wastewater Flows                             | 4  |
| 3. | Hig<br>As | gh-level Water Servicing Options – Development and sessment  | 5  |
|    | 3.1       | General Description                                          | 5  |
|    |           | 3.1.1 Option 1 – Intra-Municipal Water Servicing             | 5  |
|    |           | 3.1.2 Option 2 – Inter-Municipal Water Servicing             | 8  |
|    | 3.2       | Estimates of Probable Cost                                   | 11 |
|    | 3.3       | High-level Assessment                                        | 12 |
| 4. | Hig<br>As | gh-level Sewage Servicing Options – Development and sessment | 14 |
|    | 4.1       | General Description                                          | 14 |
|    |           | 4.1.1 Option 1 – Intra-Municipal Sewage Servicing            | 14 |
|    |           | 4.1.2 Option 2 – Inter-Municipal Sewage Servicing            | 17 |
|    | 4.2       | Estimates of Probable Cost                                   | 20 |
|    | 4.3       | High-level Assessment                                        | 21 |
| 5. | Clo       | osing                                                        | 23 |

# List of Tables

| Table 1 | Water Design Basis                  | 3 |
|---------|-------------------------------------|---|
| Table 2 | Preliminary Projected Water Demands | 4 |
| Table 3 | Wastewater Design Basis             | 4 |

Township of Puslinch / Ontario Clean Water Agency Feasibility Study for Municipal Water and Sewage Servicing in the Township of Puslinch FINAL TM-2: Development and Assessment of Water and Sewage Servicing Options

| Table 4  | Preliminary Projected Wastewater Flows                            | . 4 |
|----------|-------------------------------------------------------------------|-----|
| Table 5  | Water Servicing Option 1 – Infrastructure / Process Requirements  | . 6 |
| Table 6  | Water Servicing Option 2 – Infrastructure / Process Requirements  | . 9 |
| Table 7  | Water Servicing Options – Cost Estimates                          | 12  |
| Table 8  | Water Servicing Options – High-Level Assessment Results           | 12  |
| Table 9  | Sewage Servicing Option 1 – Infrastructure / Process Requirements | 15  |
| Table 10 | Sewage Servicing Option 2 – Infrastructure / Process Requirements | 18  |
| Table 11 | Sewage Servicing Options – Cost Estimates                         | 21  |
| Table 12 | Sewage Servicing Options – High-Level Assessment Results          | 21  |

# **List of Figures**

| Figure 1 | General Schematic – Option 1: Intra-Municipal Water Servicing  |
|----------|----------------------------------------------------------------|
| Figure 2 | General Schematic – Option 2: Inter-Municipal Water Servicing  |
| Figure 3 | General Schematic – Option 1: Intra-Municipal Sewage Servicing |
| Figure 4 | General Schematic – Option 2: Inter-Municipal Sewage Servicing |

# **List of Appendices**

Appendix A - Detailed Calculations

# 1. Introduction

# 1.1 Background

The Township of Puslinch (Township) is undertaking a Feasibility Study to assess the feasibility of implementing municipal water and sewage services within key areas of the Township. Currently, water and wastewater services in the Township consist of individual onsite wells and septic systems, as well as a few small and private communal water and sewage systems servicing individual developments.

The Township is surrounded by growing urban centres on all four sides with increasing demands for resources and land. The natural setting surrounding the Township and its accessibility to major markets and urban centres make this area an attractive place for development. Realizing this potential and the limitations on opportunities for growth resulting from lack of servicing, the need to assess the viability of implementing municipal water and sewage services for key areas within the Township was identified.

As part of the Feasibility Study, key steps have been undertaken to provide the foundation of the planning and assessment processes typically followed in this type of studies. As such, the following steps have now been completed with their results documented in a separate technical memorandum as follows:

+ Technical Memorandum No.1 (TM-1) – Study Area Characterization and Water & Wastewater Demands Analysis. TM-1 provides a description of the general characteristics of the study area in terms of existing land uses, population and employment projections, and existing water and sewage uses. General criteria in terms of proposed water demands and sewage flows for the study area are also documented in TM-1.

The next step in the process consists of developing potential servicing options for both water and sewage servicing, based on the general criteria developed in TM-1, and completing a high-level assessment of the servicing options in terms of key advantages, disadvantages and estimated probable costs.

# 1.2 Purpose of this Technical Memorandum

The purpose of this Technical Memorandum No.2 (TM-2) is to provide a general description of the available high-level water and sewage servicing options, the major infrastructure requirements and probable cost estimates associated with each option, as well as the results of the high-level assessment.

# 2. Water and Wastewater Design Basis

This section summarizes the proposed preliminary design basis, in terms of water demands and wastewater flows, for municipal water and sewage servicing in the Study Area. Additional details on the establishment of the design basis can be found in CIMA's *TM-1 Study Area Characterization & Water and Wastewater Demand Analysis*, January 2018.

# 2.1 Water System – Design Basis

The drinking water system, including water supply sources, water treatment plant and treated water storage are typically designed to satisfy the projected maximum day water demand of the service area.

Key considerations for sizing the different water system components include:

- + Water supply may be from either a surface water or groundwater source. However, given the lack of a significant surface water source within the Study Area, and given the evidence of significant groundwater resources in the area, it is anticipated that a groundwater supply system would be proposed for any water servicing solution within the Township.
- + The supply source for the new system should be able to meet the projected maximum design day demands. Multiple groundwater supply wells may be required to satisfy the projected maximum day demands.
- + Treatment processes should be able to meet the projected maximum design day demands, with Peak Hour Demands, with Emergency and/or Fire demands provided from storage.
- + Provision of Fire Protection through the Municipal water distribution system is a Municipal decision. Should the Township decides to provide fire protection via the municipal water system, the minimum fire flows should be established with consideration given to the latest Fire Underwriter's Survey document "Water Supply for Public Fire Protection" and/or the MOECC's fire flows guidelines, whichever is judged more appropriate.
- + The distribution system should be designed to maintain system pressures between 40 psi and 100 psi for a full range of demand scenarios. If the Township decides to provide Fire protection through the municipal system, the system should be sized to convey Maximum Day Demands plus Fire Flows while maintaining a minimum pressure of 20 psi throughout the system. The system should also be designed to minimize dead-end mains and excessive residence times which may lead to water quality issues. Watermain sizing would have a direct impact on the cost of the system, operation and maintenance requirements in addition to water quality considerations.

In order to establish the water demands for the study area, a 25-year planning period which corresponds to the year 2041, has been assumed. The basis for calculating the design average and maximum day water demands for the study area are summarized in Table 1.

| Criteria                                 | Value | Units   | Comments                                                                                                                          |
|------------------------------------------|-------|---------|-----------------------------------------------------------------------------------------------------------------------------------|
| Unit per Capita Consumption<br>Rate      | 360   | L/cap/d | Assumed as the mid-point from MOECC range of 270-450 L/cap/day and marginally above the Meadows of Aberfoyle rate of 353 L/cap/d. |
| Residential Max. Day Factor              | 2.0   | -       | Based on MOECC Guidelines and expected future total residential and employment population of 7,900 for the study area.            |
| Industrial/Commercial Max. Day<br>Factor | 3.0   | -       | Based on MOECC suggested range between 2 and 4 for industrial uses.                                                               |

### Table 1 Water Design Basis

# 2.1.1 Preliminary Projected Water Demands

Considering the financial stability of the Township for the provision of municipal services and the implementation feasibility of a municipal water system for the study area, the following was considered:

- + Based on the nature and the character of their businesses, it won't be viable to provide municipal water services to Nestle Canada Inc. for bottling purposes, or to St. Mary's Cement for process and cooling water. It is assumed that these two large users will continue to use the sources that are currently permitted.
- + Provision of municipal water services should account for all projected residential, employment and most ICI uses within the study area. Municipal water servicing should also account for provision of municipal potable water to Nestle Canada Inc. and St. Mary's Cement for domestic purposes for the staff at these facilities.
- + All other existing large users, considered in this study, would connect to the municipal system. Existing average day water demands recorded for the period 2015-2016 from large users will be maintained to the 2041 planning period. Maximum day demands will increase based on the assumed max. day factor of 3.0, or to the current Permit to Take Water (PTTW) rate, whichever rate is lower.

Subject to the above noted consideration, the preliminary projected water demands for the study area are summarized in Table 2.

|--|

| Water                                        | Proposed Average Day<br>Demands |      | Proposed Max. Day<br>Demands |      |
|----------------------------------------------|---------------------------------|------|------------------------------|------|
|                                              | m³/d                            | L/s  | m³/d                         | L/s  |
| Proposed Preliminary System Water<br>Demands | 2,873                           | 33.3 | 6,246                        | 72.3 |

### 2.2 Wastewater System – Design Basis

Wastewater treatment facilities are typically designed for average day flows, while wastewater conveyance systems are designed and rated to deliver peak wastewater flows to the treatment facilities. Similar to the rationale used to develop the water design basis, a 25-year planning period which corresponds to the year 2041, has been assumed to calculate wastewater generation in the study area.

The basis for calculating the design average and peak wastewater flows for the study area is summarized in Table 3.

| Table 3 Wastewater Design Ba |
|------------------------------|
|------------------------------|

| Criteria                                                             | Value  | Units     | Comments                                                                                               |
|----------------------------------------------------------------------|--------|-----------|--------------------------------------------------------------------------------------------------------|
| Unit per Capita Wastewater<br>Generation Rate                        | 360    | L/cap/d   | Consistent with unit water consumption rate.                                                           |
| Peak Infiltration / Inflow Rate for<br>Industrial / Commercial Areas | 10,110 | L/ha/day  | Assumed based on the low end of MOECC<br>Guidelines as new system should have low I&I<br>contribution. |
| Peak Infiltration / Inflow Rate for Residential Areas                | 10,110 | L/ha/day  | Assumed based on the low end of MOECC<br>Guidelines as new system should have low I&I<br>contribution. |
| Population densities for<br>Industrial / Commercial                  | 85     | person/ha | Assumed based on 30m <sup>3</sup> /ha/d (low end of MOECC Guideline) and 360 L/cap/d.                  |
| Peak Factor                                                          | varies | -         | Calculated for each drainage area based on<br>Harmon Formula                                           |

### 2.2.1 Projected Wastewater Flows

Preliminary projected wastewater flows for the study area for all residential users as well as industrial and commercial users are summarized in Table 4.

### Table 4 Preliminary Projected Wastewater Flows

| Wastewater                                      | Proposed Avera<br>(for Trea | age Day Flows<br>atment) | Proposed Peak Day Flows<br>(for Sewer Capacity) |       |
|-------------------------------------------------|-----------------------------|--------------------------|-------------------------------------------------|-------|
|                                                 | m³/d                        | L/s                      | m³/d                                            | L/s   |
| Proposed Preliminary System Wastewater<br>Flows | 9,400                       | 108.8                    | 33,303                                          | 385.5 |

# 3. High-level Water Servicing Options – Development and Assessment

This section provides a description of the high-level water servicing options considered in this study. Major infrastructure / process requirements, general schematics and preliminary capital, operating and life cycle costs for each option are also presented.

# 3.1 General Description

## 3.1.1 Option 1 – Intra-Municipal Water Servicing

The Intra-Municipal Water Servicing alternative consists on providing the required water supply and treatment capacity through a new water supply system owned and operated by the Township. The new water supply system will be built within or in close proximity to one of the future well supply field identified in the City of Guelph Water and Wastewater Master Plan.

As part of Option 1, it is assumed that all existing individual on-site wells and existing small private communal water systems within the study area are expected to be decommissioned. Further consideration can be given to maintaining existing small private communal water systems during the Class EA stage; however, for the purpose of establishing high-level servicing options, it has been assumed that existing systems would no longer be in service. All small users and large users within the study area, with the exception of Nestle Canada Inc. and St. Mary's Cement, will be supplied by the new Municipal Water System. Nestle Canada Inc. and St. Mary's Cement will be provided with municipal water services for domestic uses only.

A hydrogeological investigation, including well drilling, well and aquifer testing, water quality characterization and groundwater modelling would be necessary to confirm the location and the production capacity of the new groundwater supply well(s) and any potential effects on existing natural heritage features within the area.

A new treatment facility would be required to provide the necessary treatment. A complete water quality characterization would be needed to confirm treatment requirements; however, for the purpose of option development and estimation of probable cost, it has been assumed that the water is of good quality, necessitating only treatment for disinfection.

A new storage facility will be provided as part of Option 1 in order to meet the required storage requirements for equalization, emergency and fire flows. The storage facility may take the form of an in-ground reservoir, an elevated tank, or a combination of the two. For the purposes of this Study, we have assumed that the necessary storage will be provided by a new elevated tank.

A description of the main infrastructure and process requirements for Option 1 – Intra-Municipal Water Servicing is provided in Table 5. A general schematic of the major components of Option 1 is shown in Figure 1.

Land acquisition would be anticipated for construction of the new treatment facility and the new elevated tank. All other linear infrastructure associated with Option 1 is expected to be constructed within existing road rights-of-way.

| Area         | Option Requirements                                                                                                                                                                                                                                                                                                                           |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supply       | <ul> <li>A new groundwater supply source will be developed to provide a maximum<br/>day demand of 72.3 L/s (6,250 m<sup>3</sup>/d).</li> </ul>                                                                                                                                                                                                |
| Treatment    | <ul> <li>A new water treatment facility will be built to provide the required treatment requirements. It is assumed that the water is of good water quality and treatment will consist of only disinfection through chlorination.</li> <li>The new treatment system would be designed to provide a treatment capacity of 72.3 L/s.</li> </ul> |
| Pumping      | • The new supply well(s) will be equipped with well pumps with enough capacity to overcome system pressure and pump to the new elevated tower.                                                                                                                                                                                                |
| Storage      | <ul> <li>A new elevated water tank will be built to provide for required storage<br/>requirements. The new tank will have a capacity of 3,500 m<sup>3</sup>.</li> </ul>                                                                                                                                                                       |
| Distribution | <ul> <li>Approximately 5.1 km of 400 mm diameter watermain connecting the new supply wells/treatment facility to the new elevated water tank.</li> <li>Approximately 27.1km of distribution system consisting of watermains ranging in diameter from 150 to 300 mm.</li> </ul>                                                                |

 Table 5
 Water Servicing Option 1 – Infrastructure / Process Requirements



Figure 1 General Schematic – Option 1: Intra-Municipal Water Servicing

# 3.1.2 Option 2 – Inter-Municipal Water Servicing

The Inter-Municipal Water Servicing alternative consists of securing the required water supply and treatment capacity through the existing water supply system in the City of Guelph. Preliminary discussions with staff from the City of Guelph have indicated that the City would be open to negotiations for establishing an Inter-Municipal Servicing arrangement. Through further consultation with the City, the City indicated that they do not have excess water supply capacity to support external servicing requests. The Township acknowledged that the City may not have available capacity to allocate to the Township of Puslinch, and further recognized that if capacity was available, allocation of that capacity would not be without cost.

The Township Council would need to submit a formal request to the City of Guelph to initiate formal consideration of this Option. All water supply, treatment and distribution systems in the City of Guelph would remain under the City's ownership.

Similar to Option 1, all existing individual on-site wells and existing small and private communal water systems within the study area are expected to be decommissioned. All small users and large users within the study area, with the exception of Nestle Canada Inc. and St. Mary's Cement, will be supplied by the new Intra-Municipal Water System. Nestle Canada Inc. and St. Mary's Cement will be provided municipal water services for domestic uses only.

A new elevated water tank will be provided as part of Option 2 in order to meet the required storage requirements for equalization, emergency and fire flows. A new metering facility will be required at the boundary between the City of Guelph System and the Township system. The metering facility may be combined with a pressure control station/re-chlorination system (either boosting or reduction) and may be required to control system pressures from the City of Guelph distribution system to meet the Township system requirements.

A description of the main infrastructure and process requirements for Option 2 – Inter-Municipal Water Servicing is provided in Table 6. A general schematic of the major components of Option 2 is shown in Figure 2.

Land acquisition would be anticipated for construction of the new pressure control station and the new elevated water tank. All other linear infrastructure associated with Option 2 is expected to occur with the existing road right-of-ways.

| Area         | Option Requirements                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supply       | <ul> <li>A direct connection to the City of Guelph distribution system, Pressure Zone 3.<br/>City of Guelph Water System should be able to provide a maximum day<br/>demand of 72.3 L/s (6,250 m<sup>3</sup>/d).</li> </ul>                                                                                                                                                                                                        |
| Treatment    | Not required within the Township.                                                                                                                                                                                                                                                                                                                                                                                                  |
| Facilities   | • A new metering facility with a potential pressure control station will be required to accommodate maximum day flows of 72.3 L/s (6,250 m <sup>3</sup> /d) to the new elevated tower in the Township. A new pressure control station may be required to control system pressures in the Township.                                                                                                                                 |
| Storage      | <ul> <li>A new elevated water tank will be built to provide for required storage<br/>requirements. The new tank will have a capacity of 3,500 m<sup>3</sup>.</li> </ul>                                                                                                                                                                                                                                                            |
| Distribution | <ul> <li>Approximately 2.0 km of 400 mm diameter watermain extension in Guelph to the Puslinch border, and a metering facility at the municipal boundary.</li> <li>Approximately 3.3 km of 400 mm diameter watermain from the metering facility to the new to the new elevated water tank.</li> <li>Approximately 27.1 km of local distribution system consisting of watermains ranging in diameter from 150 to 300 mm.</li> </ul> |

| Table 6 | Water Servicing | <b>Option 2 – Infrastructure</b> | / Process Requirements |
|---------|-----------------|----------------------------------|------------------------|
|---------|-----------------|----------------------------------|------------------------|

Township of Puslinch / Ontario Clean Water Agency

Feasibility Study for Municipal Water and Sewage Servicing in the Township of Puslinch FINAL TM-2: Development and Assessment of Water and Sewage Servicing Options



Figure 2 General Schematic – Option 2: Inter-Municipal Water Servicing

# 3.2 Estimates of Probable Cost

Estimates of probable capital, operating and maintenance costs and life cycle costs have been developed. Capital costs include development of new supply, treatment and storage facilities, major process and treatment equipment such as pumps, piping and valves, instrumentation, treatment equipment, standby power supply and watermain installation. Operating and maintenance costs accounted for include power, chemical usage, regulatory requirements and other replacement and labour costs. Life cycle costs have been calculated based on a 20-year life expectancy.

The following general assumptions were made when developing the costs for the servicing options:

- + Cost estimates are based on 2018 construction costs. Inflation and escalation to account for actual expected prices at the time of construction cannot be accounted for at this time.
- + Estimates of probable capital costs have been developed on a conceptual level and based on prices and data in CIMA's possession, as well as previous experience from projects of similar nature and scope. The accuracy of conceptual estimates developed at this point, are assumed to be around +/- 30%.
- + There is capital expenditure associated with the replacement of major pumping and treatment equipment every 30 years for water facilities.
- + All taxes (including the 13% HST) have been excluded.
- + The cost to decommission existing private groundwater wells and small communal water systems within the study area has not been accounted for in Water Servicing Options 1 and 2. Should this project proceed to the next phases (i.e., completion of a Class Environmental Assessment Study), an inventory of existing groundwater wells within the study area should be completed and the cost for decommissioning existing wells and private communal water systems should be added to CIMA's preliminary estimates.
- + Capital costs associated with any required upgrades needed in the City of Guelph Water System to accommodate the inter-municipal connection and servicing, or any Capital Contributions to secure Supply capacity from Guelph are unknown at this point and have not been accounted for in the estimate for Option 2. The required capital costs would need to be identified through further negotiations between the Township and the City, as well as the mechanisms to pay for these upgrades. Similarly, a portion of the operation and maintenance (O&M) costs for Option 2 should be covered under a Bulk Water Rate that the Township would pay to the City, also to be established through further negotiations between the two parties.

+ Completion of Class Environmental Assessment (Class EA) studies as well as additional amendments to existing master plans, servicing studies, secondary plans, approved draft plans, etc., have not been accounted for and should be included in the Capital Upgrade Costs, through consultation and negotiations between the Township and the City.

Life cycle costs have been estimated based on:

- + A 20 year amortization period
- + An inflation rate of 2% and an interest rate of 6% to give a market/discount rate of 4%

Estimates for probable capital, operating and life cycle costs for the water servicing options are summarized Table 7. Detailed costs calculations are included in Appendix A.

 Table 7
 Water Servicing Options – Cost Estimates

| Servicing Alternative                      | Capital Cost<br>(\$ millions) | Annual Operating<br>& Maintenance<br>Cost | NPV 20-Year Life<br>Cycle Cost <sup>1</sup><br>(\$ millions) |
|--------------------------------------------|-------------------------------|-------------------------------------------|--------------------------------------------------------------|
| Option 1 – Intra-Municipal Water Servicing | \$ 34.3                       | \$ 504,000                                | \$ 39.4                                                      |
| Option 2 – Inter-Municipal Water Servicing | \$ 29.6                       | \$ 95,400                                 | \$ 29.3                                                      |
| •• .                                       |                               |                                           |                                                              |

Notes:

Net Present Value (NPV) represents the value of the project in today's dollars. Calculated NPV for Option 2 gets reduced over time as a result of the lower O&M costs which represent cash outflows. Higher cash outflows, as in Option 1, results in a higher NPV.

# 3.3 High-level Assessment

This section presents the results of the high-level assessment completed for the water servicing options presented in Section 3.1. Key advantages and disadvantages are summarized in Table 8.

| Servicing<br>Option                         | Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Option 1 – Intra-<br>Municipal<br>Servicing | <ul> <li>Option provides the Township with complete control of the operation and maintenance of the water supply system.</li> <li>Complete independent system from supply, to treatment and distribution. Township can provide desired level of robustness and flexibility to the system.</li> <li>Provision of municipal water servicing (coupled with wastewater servicing) in the area will provide an invitation for developers to invest in the Township and promote growth in accordance with</li> </ul> | <ul> <li>Option results in highest capital,<br/>O&amp;M and life cycle costs.</li> <li>Option requires the largest amount<br/>of new infrastructure.</li> <li>Majority of residents who currently<br/>rely on private groundwater wells<br/>and communal systems may object<br/>to a connection to a municipal<br/>system.</li> <li>Residential connections to municipal<br/>systems to be born by residents.</li> </ul> |

 Table 8
 Water Servicing Options – High-Level Assessment Results

Township of Puslinch / Ontario Clean Water Agency Feasibility Study for Municipal Water and Sewage Servicing in the Township of Puslinch FINAL TM-2: Development and Assessment of Water and Sewage Servicing Options

| <ul> <li>the County Official Plan – population and employment.</li> <li>Option 2 – Inter-Municipal Servicing</li> <li>Option results in lower capital, O&amp;M and life cycle costs when compared to Option 1.</li> <li>Option 1.</li> <li>Option 1.</li> <li>Option provides the Township with some control of the operation and maintenance of the water supply system through a servicing agreement between the Township and the City.</li> <li>Option is able to optimize the use of some of the existing infrastructure (in City of Guelph) and reduces the need for new infrastructure.</li> <li>Water supply is dependant on City of Guelph supply but provision of an elevated tower in the Township wold provide a dequate level of robustness and flexibility to the system.</li> <li>City of Guelph has a proven track record of providing adequate level of robustness and flexibility to the system.</li> <li>City of Guelph has a proven track record of providing adequate level of water servicing to its residents, which create trust to potential future serviced areas in the Township.</li> <li>Option supports affordable and sustainable development between two municipalities.</li> <li>It may provide an opportunity for the two municipalities.</li> <li>It may provide an opportunity for the two municipalities and share existing resources.</li> <li>This coordinated approach to service delivery can result in efficiencies in infrastructure costs, water conservation, and allow for additional funds to be allocated to improved treatment and program delivery.</li> <li>Provision of municipal water servicing will provide an invitation for developers to invest in the areas and promote growthin accordance with the County Official Plan – population and employment.</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Option 2 - Inter-<br/>Municipal</li> <li>Option results in lower capital, O&amp;M and<br/>life cycle costs when compared to<br/>Option 1.</li> <li>Option provides the Township with some<br/>control of the operation and<br/>maintenance of the water supply system.</li> <li>Option is able to optimize the use of<br/>some of the existing infrastructure (in<br/>City of Guelph) and reduces the needfor<br/>new infrastructure.</li> <li>Water supply is dependant on City of<br/>Guelph supply but provision of an<br/>elevated tower in the Township would<br/>provide adequate level of robustness<br/>and flexibility to the system.</li> <li>City of Guelph Mas a proven track record<br/>of providing adequate level of water<br/>servicing to its residents, which create<br/>trust to potential future serviced areas in<br/>the Township.</li> <li>Option supports affordable and<br/>sustainable development between two<br/>municipalities.</li> <li>It may provide an opportunity for the two<br/>municipalities.</li> <li>It may provide an opportunity for the<br/>municipalities and share existing<br/>resources.</li> <li>This coordinated approach to service<br/>delivery.</li> <li>Provision of municipal water servicing<br/>infrastructure costs, water conservation,<br/>and allow for additional funds to be<br/>allocated to improved treatment and<br/>program delivery.</li> <li>Provision of municipal water servicing<br/>invest in the areas and promole growth<br/>in accordance with the County Official<br/>Plan – population and employment.</li> </ul>                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# 4. High-level Sewage Servicing Options – Development and Assessment

This section provides a description of the high-level sewage servicing options considered in this study. Two alternative options have been reviewed to determine the potential cost implications of each. The options selected consist of Option 1 – Intra-Municipal Sewage Servicing, and Option 2 – Inter-Municipal Sewage Servicing. Major infrastructure / process requirements, general schematics and preliminary capital, operating and life cycle costs for each option are also presented.

## 4.1 General Description

### 4.1.1 Option 1 – Intra-Municipal Sewage Servicing

The Intra-Municipal Sewage Servicing alternative considers the development of a standalone system for wastewater collection, treatment and disposal. The system would be owned and operated by the Township.

On a preliminary basis, the system would consist of a conventional gravity collection system with pumping stations and forcemains as required to accommodate ground elevation variations. A new treatment facility would be required, with discharge to a surface water course. For the purpose of this Study, a site in the vicinity of Mill Creek was selected.

This system would allow stand alone collection and treatment for the study area operated and maintained by the Township. This option includes sanitary sewer installed at standard depths of three (3) metres to five (5) below existing ground surface. However, in order to service small pockets of residential, or mixed use land, pumping stations and forcemain would be required to convey the wastewater to the treatment facility.

As shown in Figure 3 below, a pumping station would be required to service Morriston, with a forcemain installed under the Ministry of Transportation (MTO) Highway 401. A small pumping station would be required to service the Audrey Meadows and the Mini Lakes communities which would pump by forcemain to a gravity sewer at Wellington Road 34 and Brock Road. An additional pumping station would be required for the collection and conveyance for Aberfoyle and surrounding area. The existing industrial/commercial lands north of Highway 401, and the areas east of Highway 6 could be serviced by gravity sewer to a waste water treatment facility generally located near Concession Road 7 and Mill Creek area. The assimilative capacity of Mill Creek would need to be reviewed to ensure a suitable outfall location.

A description of the main infrastructure is summarized for Option 1 – Intra-Municipal Sewage Servicing in Table 9 below. A general schematic of the major components of Option 1 is shown in Figure 3.

| Area                  | Option Requirements                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Collection            | • A new conventional gravity collection system would be required throughout the Township in order to collect wastewater from the individual properties. The sewer system would range in size from 200 mm diameter up to 525 mm diameter.                                                                                                                                                                             |
| Pumping               | <ul> <li>Three pumping stations would be required to convey the wastewater from pockets that cannot, at this stage, be conveyed through a gravity system. The pumping stations would range in size from small (18 L/s) to medium sized (90 L/s) stations.</li> <li>Provision of stand-by power and overflow storage would need to be considered during detailed design.</li> </ul>                                   |
| Treatment             | • A wastewater treatment facility would need to be constructed to provide the required treatment capacity. It is anticipated that construction of the facility would be staged to accommodate current populations plus anticipated growth over the design period, with provisions for expansion beyond the current planning horizon. A new treatment plant would need to be designed for a capacity of 9,400 m3/day. |
| Effluent<br>Discharge | • For the purpose of this study, it has been assumed that treated effluent may be discharged to Mill Creek. An Assimilative Capacity Study will be required to determine if Mill Creek can be used for this disposal of treated effluent, and to establish design parameters and effluent criteria and loading limits from this facility.                                                                            |

 Table 9
 Sewage Servicing Option 1 – Infrastructure / Process Requirements

As part of Option 1, all existing individual on-site septic tanks, communal wastewater systems within the study area are expected to be decommissioned, and costs for decommissioning will be the responsibility of the private property owners.

Land acquisition would be anticipated for construction of the new treatment facility and the pumping stations. All other linear infrastructure associated with Option 1 is expected to occur with existing road rights-of-way.

Township of Puslinch / Ontario Clean Water Agency

Feasibility Study for Municipal Water and Sewage Servicing in the Township of Puslinch FINAL TM-2: Development and Assessment of Water and Sewage Servicing Options



Figure 3 General Schematic – Option 1: Intra-Municipal Sewage Servicing

# 4.1.2 Option 2 – Inter-Municipal Sewage Servicing

The Inter-Municipal Sewage Servicing alternative consists of collection and conveyance of wastewater through a sanitary sewer network, pumping stations and forcemain, with an outlet to the Guelph collection system for ultimate treatment and disposal.

Option 2 will rely on the Guelph system for treatment, and therefore will require an intermunicipal servicing agreement. Preliminary discussions with staff from the City of Guelph have indicated that the City would be open to discussions necessary to establish an intermunicipal servicing agreement; however, no terms and/or conditions have been identified.

Through further consultation with the City, the City indicated that they do not have excess wastewater treatment capacity to support external servicing requests. The Township acknowledged that the City may not have available treatment capacity to allocate to the Township of Puslinch, and further recognized that if capacity was available, allocation of that capacity would not be without cost.

The Township Council would need to submit a formal request to the City of Guelph to initiate formal consideration of this Option. All water supply, treatment and distribution systems in the City of Guelph would remain under the City's ownership.

The preliminary sewer alignment and location of pumping stations is similar to Option 1; however, an additional pumping station would be required to convey the wastewater generated from the lands east of Highway 6 to a larger pumping station that would convey the wastewater flows to the Guelph system. In addition, a flow monitoring facility would be required at the discharge location to measure flows for billing purposes.

As with Option 1 this system includes sanitary sewer installed at standard depths of three (3) to five (5) metres below existing surface. Figure 4 below provides an approximate location for a pumping station to service Morriston, Audrey Meadows, the Mini Lakes communities, Aberfoyle and surrounding area. Each pumping station will have an associated forcemain which will discharge to the gravity system prior to being pumped into Guelph.

A description of the main infrastructure is summarized for Option 2 – Inter-Municipal Sewage Servicing in Table 10 below. A general schematic of the major components of Option 2 is shown in Figure 4.

### Table 10 Sewage Servicing Option 2 – Infrastructure / Process Requirements

| Area       | Option Requirements                                                                                                                                                                                                                                  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Collection | • A new gravity sewer system would be required throughout the Township in order to collect the wastewater. The sewer system would range in size from 150 mm diameter up to 525 mm diameter.                                                          |
| Pumping    | • Four pumping stations would be required to convey the wastewater from pockets that cannot, at this stage, be conveyed through a gravity system. The pumping stations would range in size from small (18 L/s) to medium sized (385.5 L/s) stations. |

As part of Option 2, all existing individual on-site septic tanks, and communal wastewater systems within the study area are expected to be decommissioned, and costs for decommissioning will be the responsibility of the private owner.



Figure 4 General Schematic – Option 2: Inter-Municipal Sewage Servicing

# 4.2 Estimates of Probable Cost

Estimates of probable capital, operating and maintenance costs and life cycle costs have been developed. Capital costs include an allowance for property acquisition, for pumping stations and for Option 1, a treatment facility. Major process and treatment equipment such as pumps, piping and valves, instrumentation, treatment equipment, standby power supply are assumed to be included. Operating and maintenance costs accounted for include power, chemical usage, regulatory requirements and other replacement and labour costs. Life cycle costs have been calculated based on a 20-year life expectancy.

The following general assumptions were made when developing the costs for the servicing options:

- + Cost estimates are based on 2018 construction costs. Inflation and escalation to account for actual expected prices at the time of construction cannot be accounted for at this time.
- + Estimates of probable capital costs have been developed on a conceptual level and based on prices and data in CIMA's possession, as well as previous experience from projects of similar nature and scope. The accuracy of conceptual estimates developed at this point, are assumed to be +/- 30%.
- + There is capital expenditure associated with the replacement of major pumping and treatment equipment every 30 years for wastewater facilities.
- + The cost to decommission existing private septic systems within the study area has not been accounted for in Sewage Servicing Options 1 and 2.
- + Capital costs associated with any required upgrades needed in the City of Guelph collection and treatment system to accommodate the inter-municipal Option, are unknown at this point and have not been accounted for. The required capital costs would need to be identified through further negotiations between the Township and the City, as well as the mechanisms to pay for these upgrades. Similarly, a portion of the City of Guelph's operation and maintenance (O&M) costs would need to be reviewed and negotiated for Option 2.
- + Completion of a Class Environmental Assessment (Class EA) study as well as additional amendments to existing master plans, servicing studies, secondary plans, approved draft plans, etc., have not been accounted for and should be included in the Capital Upgrade Costs, through consultation and negotiation between the Township and the City.

Life cycle costs have been estimated based on:

- + A 20 year amortization period
- + An inflation rate of 2% and an interest rate of 6% to give a market/discount rate of 4%

Estimates for probable capital, operating and life cycle costs for the sewage servicing options are summarized Table 11.

| Table 11 | Sewage Servicing Options – Cost Estimat | es |
|----------|-----------------------------------------|----|
|----------|-----------------------------------------|----|

| Servicing Alternative                       | Capital Cost<br>(\$ millions) | Annual Operating<br>& Maintenance<br>Cost | NPV - 20-Year Life<br>Cycle Costs<br>(\$ millions) |
|---------------------------------------------|-------------------------------|-------------------------------------------|----------------------------------------------------|
| Option 1 – Intra-Municipal Sewage Servicing | \$ 66.6                       | \$ 814,000                                | \$ 73.0                                            |
| Option 2 – Inter-Municipal Sewage Servicing | \$ 43.5                       | \$ 289,000                                | \$ 44.5                                            |

Notes:

<sup>1.</sup> Net Present Value (NPV) represents the value of the project in today's dollars. Higher cash outflows, as in Option 1, results in a higher NPV.

# 4.3 High-level Assessment

This section presents the results of the high-level assessment completed for the water servicing options presented in Section 4.1. Key advantages and disadvantages are summarized in Table 12.

| Servicing<br>Option                         | Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Option 1 – Intra-<br>Municipal<br>Servicing | <ul> <li>Provides the Township with complete control of the operation and maintenance of the wastewater collection and treatment system.</li> <li>Complete independent system from collection, treatment and discharge/disposal. Township can provide desired level of robustness and flexibility to the system.</li> <li>Provision of municipal sewage servicing (coupled with water servicing) in the area will provide an invitation for developers to invest in the Township and promote growth in accordance with the County Official Plan – population and employment.</li> </ul> | <ul> <li>Results in highest capital, O&amp;M and life cycle costs.</li> <li>Option requires the largest amount of new infrastructure.</li> <li>Majority of residents who currently rely on private septic systems and communal systems may object to connecting to a municipal system.</li> <li>Residential connections to municipal systems to be borne by residents.</li> <li>Assimilative capacity of Mill Creek may limit capacity of treatment plant.</li> <li>An alternative effluent discharge location or method of disposal may be required.</li> </ul> |
| Option 2 – Inter-<br>Municipal<br>Servicing | • Option results in lowest capital, O&M and life cycle costs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • Majority of residents who currently rely on private septic and communal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Table 12 | Sewage Servicing | <b>Options – High-Level</b> | <b>Assessment Results</b> |
|----------|------------------|-----------------------------|---------------------------|
|          |                  |                             |                           |

Township of Puslinch / Ontario Clean Water Agency Feasibility Study for Municipal Water and Sewage Servicing in the Township of Puslinch FINAL TM-2: Development and Assessment of Water and Sewage Servicing Options

| Servicing<br>Option | Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | <ul> <li>Option provides the Township with control of the collection system and operation and maintenance, which is a lower complexity operations requirement.</li> <li>Operations costs for wastewater treatment will be fixed by Agreement with the City of Guelph, and funded through rates established in the Agreement.</li> <li>May be able to optimize the existing infrastructure (in City of Guelph) and reduce the need for new infrastructure.</li> <li>It may provide an opportunity for the two municipalities (City of Guelph and Township) to partner for funding opportunities and share existing resources.</li> <li>The coordinated approach to service delivery can result in efficiencies in infrastructure costs, water conservation, and allow for additional funds to be allocated to improved treatment and program delivery.</li> <li>Provision of municipal sewage servicing (coupled with water servicing) will provide an invitation for developers to invest in the areas and promote growth in accordance with the County Official Plan – population and employment.</li> </ul> | <ul> <li>systems may object to a connection to a municipal system.</li> <li>It most likely require an amendment the City of Guelph Official Plan to allow the extension of the City's services for areas outside of the City's urban boundaries.</li> <li>City of Guelph Wastewater Servicing Master Plan would need to integrate servicing to the area in Township.</li> <li>Upgrades to existing wastewater infrastructure in Guelph may be required, directly or indirectly, to accommodate the inter-municipal servicing.</li> <li>An inter-municipal agreement will be required to establish an intermunicipal services scheme, and to document Capital Contributions, cost sharing for Capital upgrades, and for user rates.</li> <li>The cost of any Capital Contribution and/or Capital Upgrades to secure treatment from the City of Guelph is unknown at this time, and may represent a significant impact to the overall project cost.</li> </ul> |

# 5. Closing

The above sections have described the potential high-level water and sewage servicing options for the study area within the Township. It should be noted that there are more servicing design options that may be considered (i.e. alternative locations and routing for facilities); however, the basic options and assessments would remain.

On a preliminary basis, from a capital cost perspective, it appears that the Inter-Municipal servicing options for both water and sewage servicing would be preferred. However, this assessment would have to be re-visited once formal discussions and negotiations proceed with the City of Guelph, and once the impacts of any Capital Contributions, Capital Upgrades, and user rates are established.

Township of Puslinch / Ontario Clean Water Agency Feasibility Study for Municipal Water and Sewage Servicing in the Township of Puslinch FINAL TM-2: Development and Assessment of Water and Sewage Servicing Options

# **APPENDIX A - Detailed Calculations**

| Project Title: | Puslinch Water and Sewage Feasibility Study |                |
|----------------|---------------------------------------------|----------------|
| Client:        | Township of Puslinch                        |                |
| Project No.:   | T000866A                                    |                |
| Task:          | Option Development - Water                  |                |
| Prepared By:   | Sandra Rodriguez                            | Date: 9-Jan-18 |
| Reviewed by:   | Stuart Winchester                           | Date:          |
| Povision No. : |                                             | Revision Date: |

# SOURCE: WATER DEMANDS HAVE BEEN CALCULATED PREVIOUSLY IN A SEPARATE SPREADSHEET. THIS IS A COPY OF THE WATER DEMANDS CALCULATIONS. PROVIDED HERE FOR REFERENCE AND USED IN THE DEVELEOPMENT OF OPTIONS.

### ESTIMATE WATER DEMANDS FOR WHOLE STUDY AREA

| Design Criteria                         |         |           |                                                                                                                |  |  |  |  |  |
|-----------------------------------------|---------|-----------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Description                             | Value   | Units     | Comments                                                                                                       |  |  |  |  |  |
| MOECC Residential Unit Rate             | 270-450 | L/cap/day | MOECC suggested range                                                                                          |  |  |  |  |  |
| Coloulated for Ex. Communual Systems    | 353.0   | L/cap/day | Calculated for Meadows of Aberfoyle                                                                            |  |  |  |  |  |
| Calculated for EX. Communical Systems   | 294.4   | L/cap/day | Calculated for Mini Lakes                                                                                      |  |  |  |  |  |
| Recommended Design Rate                 | 360.0   | L/cap/day | Assumed (mid point from MOECC range, marginally above Meadows of Aberfoyle rate)                               |  |  |  |  |  |
| Residential Max. Day Factor             | 2.00    | -         | Based on future residential and employment population of 7,909 as per adjacent numbers and MOECC<br>Guidelines |  |  |  |  |  |
| Safety factor for ICI future conditions | 1.00    |           | Assumed                                                                                                        |  |  |  |  |  |
| Industrial/Commercial Max. Day Factor   | 3.00    | -         | Assumed based on MOECC range between 2 and 4 for industrial uses.                                              |  |  |  |  |  |

### RECOMMENDED SCENARIO:

Provide servicing to entire service area for domestic and ICI purposes. Nestle and St. Mary's Cement to be excluded; however, a 1% allocation of total PTTW flows have been assumed for domestic purposes in both Nestle and St. Marys.

| Industry Namo                  | PTTW Ca | pacity | 1% Allocation for Domestic |      |  |
|--------------------------------|---------|--------|----------------------------|------|--|
| industry Name                  | m3/d    | L/s    | m3/d                       | L/s  |  |
| Nestle Canada Inc.             | 3,600   | 41.7   | 3.60                       | 0.04 |  |
| St. Marys Cement Inc. (Canada) | 47,136  | 545.6  | 47.14                      | 0.55 |  |

|                                                                                        | Scenario V (Dom | estic and Indus<br>and St. Mary |          |         |                   |      |  |
|----------------------------------------------------------------------------------------|-----------------|---------------------------------|----------|---------|-------------------|------|--|
| Service Type                                                                           | Ave. Day D      | emands                          | Max. Day | Demands | Peak Hour Demands |      |  |
|                                                                                        | m³/d            | L/s                             | m³/d     | L/s     | m³/d              | L/s  |  |
| Residential                                                                            | 819.6           | 9.5                             | 1,639.1  | 19.0    | 2,458.7           | 28.5 |  |
| Industrial / Commercial / Recreational (outside<br>large users)                        | 1,226.9         | 14.2                            | 2,453.8  | 28.4    | 3,680.6           | 42.6 |  |
| Industrial / Commercial / Recreational (large<br>users excluding Nestle and St. Marys) | 776.1           | 9.0                             | 2,001.1  | 23.2    | 2,328.3           | 26.9 |  |
| Allowance for Domestic Use at Nestle and St.<br>Marys                                  | 50.7            | 0.6                             | 152.2    | 1.8     | 152.2             | 1.8  |  |
| Total =                                                                                | 2,873           | 33.3                            | 6,246    | 72.3    | 8,620             | 99.8 |  |

| Project litle: |
|----------------|
| Client:        |
| Project No.:   |
| Task:          |
| Prepared By:   |
| Reviewed by:   |
| Revision No ·  |

. . .....

#### Puslinch Water and Sewage Feasibility Study

Township of Puslinch T000866A Option Development - Water Option 1A - Intra-Municipal Servicing Sandra Rodriguez Stuart Winchester

Date: 30-Jan-18 Date: 27-Feb-18 Revision Date:

Comments

### Option 1A - Intra-Municipal Servicing

Key Components:

Water supply - Assumes one new groundwater well

One common treatment facility providing treatment for well water. Assume good water quality requiring treament for disinfection only.

Storage facility - assumes one elevated water tower. To be located south of Aberfoyle and close to ex. industrial/employment area.

Distribution system - Assumes connection to Guelph distribution system around southern boundary for pressure Zone 3.

### 1. System Design Demands

|                            | Units   |      |  |  |  |  |
|----------------------------|---------|------|--|--|--|--|
| Design Demands             | m3/d    | L/s  |  |  |  |  |
| Average Day Demands        | 2,873.3 | 33.3 |  |  |  |  |
| Max. Day Demands           | 6,246.2 | 72.3 |  |  |  |  |
| Peak Hour Demands          | 8,619.9 | 99.8 |  |  |  |  |
| Calculated Max. Day Factor | 2.2     |      |  |  |  |  |
| Peak Hour Factor           | 3.0     |      |  |  |  |  |

| 2. Well Supply                                      |       |       |                                      |
|-----------------------------------------------------|-------|-------|--------------------------------------|
| Criteria                                            | Value | Units | Comments                             |
| Required Supply Demand (System Max. Day<br>Demands) | 72.3  | L/s   |                                      |
| No. wells (assumed)                                 | 1.0   |       | Assumes two wells, based on capacity |
| Well Capacity (each)                                | 72.3  | L/s   |                                      |
| No. of well pumps                                   | 1.0   |       |                                      |
| Capacity of well pump (each)                        | 72.3  | L/s   |                                      |

| . Treatment Facility - Provision of disinfection only assumed |       |       |                                                                    |  |  |  |  |  |  |
|---------------------------------------------------------------|-------|-------|--------------------------------------------------------------------|--|--|--|--|--|--|
| Criteria                                                      | Value | Units | Comments                                                           |  |  |  |  |  |  |
| Required Treatment Demand (System Max. Day Demands)           | 72.3  | L/s   |                                                                    |  |  |  |  |  |  |
| No. chlorine contact chambers (assumed)                       | 1.0   |       | Assumes only one contact chamber providing full treatment capacity |  |  |  |  |  |  |
| Tratment capacity of contact chamber                          | 72.3  | L/s   |                                                                    |  |  |  |  |  |  |

| 3. Storage Facility - Storage through an Eleva  | ted Water Tower     |                  |                                                                                                                                                                                             |
|-------------------------------------------------|---------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.a Storage Calculations based on Risk Analy    | sis for Emergenc    | y Storage (no fi | re protection)                                                                                                                                                                              |
| Criteria                                        | Value               | Units            | Comments                                                                                                                                                                                    |
| Emergency Storage Volume                        |                     |                  | Emergency storage volume equivalent to 2 x full day's demand                                                                                                                                |
| System Ave, Day Demands                         | 33                  | L/s              | -                                                                                                                                                                                           |
|                                                 | 2,873               | m3/d             |                                                                                                                                                                                             |
| Calculated Emergency Volume                     | 5,747               | m3               |                                                                                                                                                                                             |
| 3.b Storage Calculations based on MOECC G       | uidelines (fire pro | tection provided | -<br>                                                                                                                                                                                       |
| Criteria                                        | Value               | Units            | Comments                                                                                                                                                                                    |
| Minimum Required Storage Volume                 |                     |                  | Fire Storage + Equalization Storage (25% of Max. Day) + Emergency Storage (25% of<br>Fire + Equalization Storage)                                                                           |
| System Max . Day Demands                        | 6,246               | m3/d             |                                                                                                                                                                                             |
| Fire Storage                                    | 1,253               | m3               | <ul> <li>Fire storage based on ultimate euiqvalent population of 7700 people. Based on fire flow<br/>of 174 L/s for 3 hours as per MOE guidelines Table 8-1 (value interpolated)</li> </ul> |
| Equalization Storage                            | 1,562               | m3               | -                                                                                                                                                                                           |
| Emergency Storage                               | 703.6               | m3               | -                                                                                                                                                                                           |
| Minimum Required Storage Volume as per<br>MOECC | 3,518               | m3               | Separate chlorine contact chambers will provide the required disinfection requirements                                                                                                      |
|                                                 | 3.5                 | ML               |                                                                                                                                                                                             |

| 4. Distribution System                                |                   |                |               |               |                                                                                                                                                  |
|-------------------------------------------------------|-------------------|----------------|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| From Guelph/treatment facility to New Elevate         | d Tower in Aberfy | ole            |               |               |                                                                                                                                                  |
| Criteria                                              | Value             |                | Units         |               | Comments                                                                                                                                         |
| Set watermain diameter of                             | mm                | 400            | 300           | 200           | Note that future watermains in south Guelph expected                                                                                             |
|                                                       | m                 | 0.40           | 0.30          | 0.20          | to be 400 mm diameter                                                                                                                            |
|                                                       |                   |                |               |               | Approx. distance from current upper boundary of                                                                                                  |
| Length of distribution watermain                      | m                 | 5,500          | 5,500         | 5,500         | location of new tower in Aberfovle.                                                                                                              |
| Pipeline Area                                         | m2                | 0.126          | 0.071         | 0.031         |                                                                                                                                                  |
| Pipeline Volume                                       | m3                | 691.2          | 388.8         | 172.8         | 1                                                                                                                                                |
| System Ultimate Average Daily Flow                    | L/s               | 33.3           | 33.3          | 33.3          | ]                                                                                                                                                |
| System Ultimate Max. Daily Flow                       | L/s               | 72.3           | 72.3          | 72.3          | ]                                                                                                                                                |
| System Ultimate Peak Hour Flow                        | L/s               | 99.8           | 99.8          | 99.8          | ]                                                                                                                                                |
| System Max. day + Fire Flow                           | L/s               | 246.3          | 246.3         | 246.3         | l                                                                                                                                                |
| Velocity under Average Flows                          | m/s               | 0.3            | 0.5           | 1.1           | 1                                                                                                                                                |
| Velocity under Max. Flows                             | m/s               | 0.6            | 1.0           | 2.3           | Chose 400 mm mainly to be consistent with future watermains in Guelob                                                                            |
| Velocity under Peak Hour Flows                        | m/s               | 0.8            | 1.4           | 3.2           |                                                                                                                                                  |
| Velocity under Max. day + Fire flows                  | m/s               | 1.96           | 3.48          | 7.84          | ]                                                                                                                                                |
| Retention Time under Liltimate Arres                  | bro               | 5.9            | 2.0           | 4.4           | 7                                                                                                                                                |
| Retention Time under Mark Fl                          | nr\$              | ο.Ծ            | 3.2           | 1.4           | -                                                                                                                                                |
| From New Elevated Tower in About                      | nrs               | Z./            | 1.5           | U./           |                                                                                                                                                  |
| Criteria                                              | ounar and Comme   | u              |               |               | Commonte                                                                                                                                         |
|                                                       | Value             | Units          | 400           | 300           |                                                                                                                                                  |
| Set watermain diameter of                             | m                 | 0.50           | 0.40          | 0.30          | 1                                                                                                                                                |
| Length of distributions in the                        |                   | 4.000          |               |               | Approx. length for major industrial/employment area                                                                                              |
| Lengui or distribution watermain                      | m                 | 1,800          | 1,800         | 1,800         |                                                                                                                                                  |
| Pineline Volume                                       | m2                | 0.196          | 0.126         | U.U/1         | -                                                                                                                                                |
|                                                       | m3                | 353.4          | 226.2         | 127.2         | -                                                                                                                                                |
| System Ultimate Average Daily Flow                    | L/s               | 33.3           | 33.3          | 33.3          | -                                                                                                                                                |
| System Ultimate Max. Daily Flow                       | L/s               | /2.3           | /2.3          | /2.3          | -                                                                                                                                                |
|                                                       | L/S               | 99.8           | 99.8          | 99.8          | 1                                                                                                                                                |
|                                                       | L/S               | 246.3          | 246.3         | 246.3         | 4                                                                                                                                                |
| velocity under Average Flows                          | m/s               | 0.17           | 0.26          | 0.47          | -                                                                                                                                                |
| Velocity under Max. Flows                             | m/s               | 0.37           | 0.58          | 1.02          | -                                                                                                                                                |
| velocity under Peak Hour Flows                        | m/s               | 0.51           | U.79          | 1.41          | Chopp 400 mm to opticity many days for 5                                                                                                         |
| Velocity under Max. day + Fire flows                  | m/s               | 1.3            | 2.0           | 3.5           | conditions in major industrial/employment area                                                                                                   |
| Retention Time under Ultimate Average Flows           | hrs               | 3.0            | 1.9           | 1.1           | 1                                                                                                                                                |
| Retention Time under Max. Flows                       | hrs               | 1.4            | 0.9           | 0.5           | <u></u>                                                                                                                                          |
| From New Elevated Tower in Aberfyole to Mor           | riston            |                |               |               |                                                                                                                                                  |
| Criteria                                              | Value             | Units          |               |               | Comments                                                                                                                                         |
| Set watermain diameter of                             | mm                | 300            | 200           | 150           | -                                                                                                                                                |
|                                                       | m                 | 0.30           | 0.20          | 0.15          | Approx. length for major industrial/employment area                                                                                              |
| Length of distribution watermain                      | m                 | 1,500          | 1,500         | 1,500         | to Morriston                                                                                                                                     |
| Pipeline Volume                                       | m2<br>m3          | 0.071<br>106 0 | 0.031<br>47.1 | U.U18<br>26.5 | -                                                                                                                                                |
| System Ultimate Average Daily Flow for                |                   |                |               |               | 7                                                                                                                                                |
| workision only<br>System Ultimate Max. Daily Flow for | L/s               | 2.6            | 2.6           | 2.6           | -                                                                                                                                                |
| MORRISTON only                                        | L/s               | 5.2            | 5.2           | 5.2           | _                                                                                                                                                |
| MORRISTON only                                        | L/s               | 7.8            | 7.8           | 7.8           |                                                                                                                                                  |
| -<br>System Max. day + Fire Flow                      | L/s               | 43.2           | 43.2          | 43.2          | 2041 Projected population for Morriston is 620<br>people. As per MOE Guidelines suggested fireflows<br>for this population is 38 L/s for 2 hours |
| Velocity under Average Flows                          | m/s               | 0.04           | 0.08          | 0.15          | , ,                                                                                                                                              |
| Velocity under Max. Flows                             | m/s               | 0.07           | 0.16          | 0.29          | -                                                                                                                                                |
| Velocity under Max. day + Fire flows                  | m/s               | 0.6            | 1.4           | 2.4           | Chose 200 mm to satisfy max. day + fire flow conditions                                                                                          |
| Retention Time under Lillimate A                      | her               | 11.4           | E 4           | 20            | 7                                                                                                                                                |
| Retention Time under Max. Flows                       | hrs               | 5.7            | 2.5           | 2.9           | -                                                                                                                                                |

| Project Title: | Puslinch Water and Sewage Feasibility Study                |                          |  |  |  |
|----------------|------------------------------------------------------------|--------------------------|--|--|--|
| Client:        | Township of Puslinch                                       |                          |  |  |  |
| Project No.:   | T000866A                                                   |                          |  |  |  |
| Task:          | Water Servcing Option Development - Option 1 Probable Cost |                          |  |  |  |
| Prepared By:   | Sandra Rodriguez                                           | Date: 30-Jan-18          |  |  |  |
| Reviewed by:   | S. Winchester                                              | Date: 27-Feb-18          |  |  |  |
| Revision No. : | 1                                                          | Revision Date: 27-Feb-18 |  |  |  |
|                |                                                            |                          |  |  |  |

CAPITAL AND OPERATION & MAINTENANCE COST

### CAPITAL AND OPERATION & MAINTENANCE COST

| Option 1A - Intra-Municipal System                                   |                                      |          |                     |                                                |                                                  |                                          |                              |                  |                                                                                |  |
|----------------------------------------------------------------------|--------------------------------------|----------|---------------------|------------------------------------------------|--------------------------------------------------|------------------------------------------|------------------------------|------------------|--------------------------------------------------------------------------------|--|
|                                                                      |                                      |          |                     |                                                |                                                  |                                          |                              |                  |                                                                                |  |
| System Description                                                   | Quantity                             | Unit     | N                   | aterial<br>Total Material                      | La                                               | bour<br>Total Labour                     | Total Material               | Sub Total Cost   | Comments                                                                       |  |
|                                                                      |                                      |          | Unit Cost           | Cost                                           | % of Material                                    | Cost                                     | & Labour                     |                  |                                                                                |  |
| Supply and Treatment                                                 | 1                                    |          | 1                   | 1                                              | 1                                                | 1                                        |                              | T                | 1                                                                              |  |
| testing                                                              | 1                                    | LS       | \$ 500,00           | \$ 500,000                                     | 50%                                              | \$ 250,000                               | \$ 750,000                   |                  |                                                                                |  |
| Construction of new production wells (assumed 2), equipped with      |                                      | 10       |                     |                                                | 500/                                             |                                          |                              |                  |                                                                                |  |
| New treatment facility (assumes 15mx10m footprint)                   | 1                                    | LS<br>m2 | \$ 150,00           | 0 \$ 150,000                                   | 50%                                              | \$ 150,000                               | \$ 225,000                   |                  |                                                                                |  |
| Piping, valves and fittings                                          | 1                                    | LS       | \$ 50,00            | 0 \$ 50,000                                    | 50%                                              | \$ 25,000                                | \$ 75,000                    |                  |                                                                                |  |
| Instrumentation                                                      | 1                                    | LS       | \$ 35,00            | 0 \$ 35,000                                    | 30%                                              | \$ 10,500                                | \$ 45,500                    |                  |                                                                                |  |
| Sodium Hypoclorite System - disinfection                             | 1                                    | each     | \$ 50,00            | 0 \$ 50,000                                    | 30%                                              | \$ 15,000                                | \$ 65,000                    |                  |                                                                                |  |
| motor starters, controls and automation)                             | s<br>1                               | LS       | \$ 450,00           | 0 \$ 450,000                                   | 50%                                              | \$ 225,000                               | \$ 675,000                   |                  |                                                                                |  |
| Mechanical (HVAC system, lighting)                                   | 1                                    | LS       | \$ 75,00            | 0 \$ 75,000                                    | 50%                                              | \$ 37,500                                | \$ 112,500                   |                  |                                                                                |  |
| Site Works (includes site grading exceptation trenching backfilling) | 1                                    | 18       | \$ 250.00           | 0 ¢ 250.000                                    | E0%                                              | \$ 125.000                               | \$ 275.000                   |                  |                                                                                |  |
| Contact Chambers for disinfection                                    | 1                                    | LS       | \$ 250,00           | 0 \$ 250,000                                   | 50%                                              | \$ 125,000                               | \$ 375,000                   |                  |                                                                                |  |
| Other site works (watermains, driveway, fences, gates, sodding,      |                                      |          | +                   |                                                |                                                  | •                                        | +,                           |                  |                                                                                |  |
| etc.)                                                                | 1                                    | LS       | \$ 100,00           | 0 \$ 100,000                                   | 50%                                              | \$ 50,000                                | \$ 150,000                   |                  |                                                                                |  |
| Power upgrades to 5 phase                                            | 1                                    | 18       | \$ 75,00            | 0 \$ 75,000                                    | 50%                                              | \$ 37,500                                | \$ 112,500                   |                  | Assumed \$300,000/acre as per info provide by real                             |  |
| Property acquisition - treatment facility                            | 1.0                                  | acres    | \$ 300,00           | 0 \$ 300,000                                   |                                                  | \$-                                      | \$ 300,000                   |                  | state agent in Puslinch.                                                       |  |
| Property acquisition - storage facility                              | 1.00                                 | acres    | \$ 300.00           | 0 \$ 300.000                                   |                                                  | s .                                      | \$ 300.000                   |                  | Assumed \$300,000/acre as per info provide by real<br>state agent in Puslinch. |  |
| Sub-total Capital Cost for New Well Pump =                           | 1.00                                 | Borca    | \$ 500,00           | \$ 300,000                                     |                                                  | Ψ -                                      | \$ 300,000                   | \$ 4,010,500     | state agent in rasinen.                                                        |  |
| Storage and Distribution System                                      |                                      |          |                     |                                                |                                                  |                                          |                              |                  | L                                                                              |  |
| New Elevated water tower (3,500 m3)                                  | 1                                    | LS       | \$ 4,000,00         | 0 \$ 4,000,000                                 | incl                                             |                                          | \$ 4,000,000                 |                  | Provided by M. Elliott                                                         |  |
| 400 mm diameter watermain                                            | 5,100                                | m        | \$ 8                | 0 \$ 4,437,000                                 | incl                                             |                                          | \$ 4,437,000                 |                  | Assumes installation in shoulder of road                                       |  |
| 300 mm diameter watermain                                            | 7,700                                | m        | \$ 52               | 20 \$ 4,004,000                                | incl                                             |                                          | \$ 4,004,000                 |                  | Assumes installation in shoulder of road                                       |  |
| Sub-total Capital Cost for Connecting Watermain =                    | 20,100                               | m        | \$ 31               | 0 \$ 7,230,000                                 | Inci                                             |                                          | \$ 7,230,000                 | \$ 19,677,000    | Assumes installation in shoulder of roda                                       |  |
| g                                                                    |                                      |          |                     | SUB-TOTAL                                      | CAPITAL COST                                     | IN CURRENT                               | YEAR (2018) =                | \$ 23,687,500    |                                                                                |  |
|                                                                      |                                      |          |                     |                                                |                                                  | Contir                                   | ngency (20%) =               | \$ 4,737,500     |                                                                                |  |
|                                                                      |                                      |          |                     |                                                | Engineer                                         | ring and Const                           | ruction (15%) :              | = \$ 3,553,200   |                                                                                |  |
|                                                                      |                                      |          |                     | TOTAL                                          |                                                  | Contractor Ov                            | verhead (10%) = \$ 2,368,800 |                  |                                                                                |  |
|                                                                      |                                      |          |                     | TUTAL                                          | SAPITAL CUSI                                     | INCORRENT                                | TEAR (2010) -                | - > 34,347,000   |                                                                                |  |
| OPERATION AND MAINTENANCE COST                                       |                                      |          |                     |                                                |                                                  |                                          |                              |                  |                                                                                |  |
| Area                                                                 | Item                                 | QTY      | Unit                | Unit Cost (\$)                                 | Annual Cost                                      | Subtotal                                 |                              |                  | Comments                                                                       |  |
| Pumping Cost                                                         | Well Pumps Annual<br>Electrical Cost | \$ 1     | LS                  | \$ 15,000                                      | \$ 10,000                                        |                                          |                              |                  |                                                                                |  |
|                                                                      |                                      |          |                     | Sub-Total                                      | Well Pumps =                                     | \$ 10,000                                |                              |                  |                                                                                |  |
|                                                                      | NaOCI at new well pump               |          |                     |                                                |                                                  |                                          |                              |                  |                                                                                |  |
| Chemical Systems                                                     | disinfection                         | \$ 1     | 15                  | \$ 5,000                                       | \$ 5,000                                         |                                          |                              |                  |                                                                                |  |
|                                                                      |                                      | ý I      |                     | Sub-Total Chem                                 | nical Systems =                                  | \$ 5,000                                 |                              |                  |                                                                                |  |
|                                                                      | Faultanant maintananan               |          |                     |                                                |                                                  |                                          |                              |                  |                                                                                |  |
|                                                                      | contracts and agreements             |          |                     |                                                |                                                  |                                          |                              |                  |                                                                                |  |
|                                                                      |                                      | 1        | LS                  | \$ 30,000                                      | \$ 30,000                                        |                                          |                              |                  |                                                                                |  |
| Miscellaneous O&M                                                    | Pumps parts and                      |          |                     |                                                |                                                  |                                          |                              |                  |                                                                                |  |
|                                                                      | replacement, materials,              |          |                     |                                                |                                                  |                                          |                              |                  |                                                                                |  |
|                                                                      | for new facility                     | 1        | LS                  | \$ 15,000                                      | \$ 15,000                                        |                                          |                              |                  |                                                                                |  |
|                                                                      |                                      |          | Sub-                | Total Regulatory R                             | equirements =                                    | \$ 45,000                                |                              |                  |                                                                                |  |
|                                                                      |                                      |          |                     |                                                |                                                  |                                          |                              |                  |                                                                                |  |
| Labour                                                               | Labour                               | 1        | 15                  | \$ 350,000                                     | \$ 350,000                                       |                                          | Assumed that                 | Town will retain | an Operating Agency to operate the system on their                             |  |
|                                                                      |                                      | 1        | Sub-                | Fotal Regulatory R                             | equirements =                                    | \$ 350,000                               | ochan, righ-le               | vercost provided |                                                                                |  |
| Regulatory Reguliremente                                             | Lab and reporting                    | 1        | LS                  | \$ 10,000                                      | \$ 10,000                                        |                                          |                              |                  |                                                                                |  |
| Sub-Total Regulatory Requirements = \$ 10,000                        |                                      |          |                     |                                                |                                                  |                                          |                              |                  |                                                                                |  |
| Regulatory Requirements                                              |                                      |          | Sub-                | Fotal Regulatory R                             | equirements =                                    | \$ 10,000                                |                              |                  |                                                                                |  |
|                                                                      |                                      | т        | Sub-                | Total Regulatory R                             | equirements =<br>YEAR (2018) =                   | \$ 10,000                                |                              |                  |                                                                                |  |
|                                                                      |                                      | тс       | Sub-<br>DTAL O&M CC | Fotal Regulatory R<br>IST IN CURRENT<br>Contir | equirements =<br>YEAR (2018) =<br>ngency (20%) = | \$ 10,000<br>= \$ 420,000<br>= \$ 84,000 |                              |                  |                                                                                |  |

| Project Title:                  | Puslinch Water and Sewage Feasibility      | Study               |                |                    |                           |
|---------------------------------|--------------------------------------------|---------------------|----------------|--------------------|---------------------------|
| Client:                         | Township of Puslinch                       |                     |                |                    |                           |
| Project No.:                    | T000866A                                   |                     |                |                    |                           |
| Task:                           | Water Servcing Option Development - Opti   | on 1 Probable Cost  |                |                    |                           |
| Prepared By:                    | Sandra Rodriguez                           |                     |                | Date:              | 8-Feb-18                  |
| Reviewed by:                    | S. Winchester                              |                     |                | Date:              | 27-Feb-18                 |
| Revision No. :                  | 2                                          |                     |                | Revision Date:     | 28-Feb-18                 |
| LIFE CYCLE COST                 |                                            |                     |                |                    |                           |
| Option 1A - Intra-Municipal     | System                                     |                     |                |                    |                           |
| Economic Eactors                |                                            |                     |                |                    |                           |
| Interest rate (%)               | 6%                                         |                     |                |                    |                           |
| Inflation rate (%)              | 2.0%                                       |                     |                |                    |                           |
| Broject Start Year (Vear n)     | 2020                                       |                     |                |                    |                           |
| Planning Period (vrs)           | 2020                                       |                     |                |                    |                           |
| rianning renoa (yrs)            | 20                                         |                     |                |                    |                           |
| Cost in Year n = Cost in Curre  | ent Year x (1+inflation Rate)^(Year n - Cu | rrent Year)         |                |                    |                           |
| Present Value = Cost /((1+Int   | erest Rate)^(Year n - Current Year))       |                     |                |                    |                           |
|                                 |                                            | 20                  | Year NPV       | -                  |                           |
| Year                            | Capital Cost                               | NPV Capital Cost    | Operating Cost | NPV Operating Cost | Capital and Operating NPV |
| 2018                            | \$34,347,000                               |                     | \$504,000      |                    |                           |
| 2019                            | \$0                                        |                     | \$0            |                    |                           |
| 2020                            | \$35,734,619                               | \$31,803,684        | \$524,362      | \$466,680          | \$32,270,363              |
| 2021                            | \$0                                        | \$0                 | \$534,849      | \$449,069          | \$449,069                 |
| 2022                            | \$0                                        | \$0                 | \$545,546      | \$432,123          | \$432,123                 |
| 2023                            | \$0                                        | \$0                 | \$556,457      | \$415,817          | \$415,817                 |
| 2024                            | \$0                                        | \$0                 | \$567,586      | \$400.126          | \$400.126                 |
| 2025                            | \$0                                        | \$0                 | \$578,938      | \$385.027          | \$385.027                 |
| 2026                            | \$0                                        | \$0                 | \$590.516      | \$370.497          | \$370.497                 |
| 2027                            | \$0                                        | \$0                 | \$602.327      | \$356.516          | \$356.516                 |
| 2028                            | \$0                                        | \$0                 | \$614.373      | \$343.063          | \$343.063                 |
| 2029                            | \$0                                        | \$0                 | \$626,661      | \$330,117          | \$330,117                 |
| 2030                            | \$862,404                                  | \$428,589           | \$639.194      | \$317.660          | \$746.248                 |
| 2031                            | \$0                                        | \$0                 | \$651,978      | \$305.673          | \$305.673                 |
| 2032                            | \$0                                        | \$0                 | \$665.017      | \$294,138          | \$294,138                 |
| 2033                            | \$0                                        | \$0                 | \$678.318      | \$283,038          | \$283,038                 |
| 2034                            | \$0                                        | \$0                 | \$691,884      | \$272.358          | \$272,358                 |
| 2035                            | \$0                                        | \$0                 | \$705,722      | \$262,080          | \$262,080                 |
| 2036                            | \$0                                        | \$0                 | \$719.836      | \$252,190          | \$252,190                 |
| 2037                            | \$0                                        | \$0                 | \$734,233      | \$242.674          | \$242,674                 |
| 2038                            | \$0                                        | \$0                 | \$748.917      | \$233,516          | \$233.516                 |
| 2039                            | \$0                                        | \$0                 | \$763.896      | \$224 704          | \$224 704                 |
| 2040                            | \$1.051.266                                | \$291.732           | \$779,174      | \$216.225          | \$507.956                 |
|                                 | Sub-Total NPV value =                      | \$32.524.004        |                | \$6.853.289        | +,                        |
|                                 | Total NPV value (20 years) =               |                     | \$39,377,300   |                    | \$39,377,300              |
|                                 |                                            |                     |                |                    |                           |
| Capital Cost Breakdown Eve      | ry 10 Years :                              |                     |                |                    |                           |
| Well Pump House                 | on system media reconstration              | Cost every 10 years | Comments       |                    |                           |
| equipment =                     | on system, media regeneration,             | \$100,000           | Assumed        |                    |                           |
| Well rehabilitation (2 wells) = | =                                          | \$80,000            | Assumed        |                    |                           |
| Elevated Tank (inspection, co   | pating, etc.) =                            | \$500,000           |                |                    |                           |
| Total Capital Cost New Well     | Pump House / 10 years                      | \$680,000           |                |                    |                           |

Total Additional Capital Cost / 10 years =

\$680,000

|                |                                                            | CAPITAL AND OPERATION & MAINTENANCE COST |
|----------------|------------------------------------------------------------|------------------------------------------|
| Project Title: | Puslinch Water and Sewage Feasibility Study                |                                          |
| Client:        | Township of Puslinch                                       |                                          |
| Project No.:   | T000866A                                                   |                                          |
| Task:          | Water Servcing Option Development - Option 2 Probable Cost |                                          |
| Prepared By:   | Sandra Rodriguez                                           | Date: 30-Jan-18                          |
| Reviewed by:   | S. Winchester                                              | Date: 27-Feb-18                          |
| Revision No. : | 1                                                          | Revision Date: 27-Feb-18                 |

### CAPITAL AND OPERATION & MAINTENANCE COST

| Option 1B - Inter-Municipal System                                           |                         |                 |              |           |                   |            |               |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
|------------------------------------------------------------------------------|-------------------------|-----------------|--------------|-----------|-------------------|------------|---------------|-----|-------------------------------------|-------------------------------------------------------|----------------|-------------------|--------------------------------------------------------------------------------|--|--|--|--|
|                                                                              |                         |                 |              |           |                   |            |               |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
| System Description                                                           | Quantity                | Unit            |              | Mat       | terial<br>Total I | Matorial   | La            | Tot | tal Labour                          | Tota                                                  | al Material &  | Sub Total Cost    | Comments                                                                       |  |  |  |  |
|                                                                              |                         |                 | Un           | it Cost   | C                 | ost        | % of Material |     | Cost                                |                                                       | Labour         |                   |                                                                                |  |  |  |  |
| Supply                                                                       |                         |                 |              |           |                   |            | r             |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
| Connection to ex. Gueiph distribution system, including metering<br>facility | 1                       | 15              | s            | 250.000   | s                 | 250.000    | 50%           | s   | 125 000                             | s                                                     | 375.000        |                   |                                                                                |  |  |  |  |
| Pressure Control Station                                                     | 1                       | LS              | \$           | 1.000.000 | \$ 1              | .000.000   | 50%           | ŝ   | 500.000                             | ŝ                                                     | 1.500.000      |                   | Assumed by S.Rodriauez                                                         |  |  |  |  |
|                                                                              |                         |                 |              | ,,.       |                   |            |               |     |                                     |                                                       | ,,             |                   | Assumed \$300,000/acre as per info provide by real                             |  |  |  |  |
| Property acquisition - Pressure Control station                              | 0.5                     | acres           | \$           | 300,000   | \$                | 150,000    |               | \$  | -                                   | \$                                                    | 150,000        |                   | state agent in Puslinch.<br>Assumed \$300.000/acre as per info provide by real |  |  |  |  |
| Property acquisition - storage facility                                      | 1.0                     | acres           | \$           | 300,000   | \$                | 300,000    |               | \$  | -                                   | \$                                                    | 300,000        |                   | state agent in Puslinch.                                                       |  |  |  |  |
| Sub-total Capital Cost for New Well Pump =                                   |                         |                 |              |           |                   |            |               |     |                                     |                                                       |                | \$ 2,325,000      |                                                                                |  |  |  |  |
| Storage and Distribution                                                     |                         |                 | r            |           |                   |            | l.            |     |                                     | r                                                     |                |                   |                                                                                |  |  |  |  |
| New Elevated water tower (3,500 m3)                                          | 1                       | LS              | \$ 4         | 4,000,000 | \$ 4              | ,000,000   | incl          |     | \$ 4,000,000 Provided by M. Elliott |                                                       |                |                   |                                                                                |  |  |  |  |
| 400 mm diameter watermain                                                    | 3,300                   | m               | \$           | 870       | \$ 2              | ,871,000   | incl          |     |                                     | \$                                                    | 2,871,000      |                   | Assumes installation in shoulder of road                                       |  |  |  |  |
| 300 mm diameter watermain                                                    | 7,700                   | m               | \$           | 520       | \$ 4              | ,004,000   | incl          |     |                                     | \$ 4,004,000 Assumes installation in shoulder of road |                |                   |                                                                                |  |  |  |  |
| 150mm - 200 mm diameter watermain                                            | 20,100                  | m               | \$           | 360       | \$ 7              | ,236,000   | incl          |     |                                     | \$                                                    | 7,236,000      |                   | Assumes installation in shoulder of road                                       |  |  |  |  |
| Sub-total Capital Cost for Connecting Watermain =                            |                         |                 |              |           |                   |            |               |     |                                     |                                                       |                | \$ 18,111,000     |                                                                                |  |  |  |  |
|                                                                              |                         |                 |              |           |                   | SUB-I      | UTAL CAPITA   | LUC | JST IN CUP                          | RENI                                                  | YEAR (2018)    | \$ 20,436,000     |                                                                                |  |  |  |  |
|                                                                              |                         |                 |              |           |                   |            |               |     |                                     | Contin                                                | igency (20%) = | \$ 4,087,200      |                                                                                |  |  |  |  |
|                                                                              | Const                   | ruction (15%) = | \$ 3,065,400 |           |                   |            |               |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              |                         |                 |              |           |                   |            |               |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              |                         |                 |              |           |                   |            |               |     |                                     |                                                       | TERIC (2010)   | \$ 23,032,200     |                                                                                |  |  |  |  |
| OPERATION AND MAINTENANCE COST                                               |                         |                 |              |           |                   |            |               |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
| Area                                                                         | ltem                    | QTY             |              | Unit      | Unit C            | Cost (\$)  | Annual Cost   | s   | Subtotal                            |                                                       |                |                   | Comments                                                                       |  |  |  |  |
|                                                                              | Well Pumps Annual       |                 |              |           |                   |            |               |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
| Pumping Cost                                                                 | Electrical Cost         | \$ 1            |              | LS        | \$                | 15,000     | \$ 10,000     |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              |                         |                 |              |           | S                 | ub-Total \ | Well Pumps =  | \$  | 10,000                              |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              | NaOCI at new well       |                 |              |           |                   |            |               |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
| Chemical Systems                                                             | pump facility for       |                 |              |           |                   |            |               |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              | primary disinfection    | \$ 1            |              | LS        | Ş                 | 2,000      | \$ 2,000      |     |                                     | In case                                               | e they want to | do re-chlorinatio | in at the storage facility                                                     |  |  |  |  |
|                                                                              |                         |                 |              |           | Sub-To            | tal Chemi  | cal Systems = | Ş   | 2,000                               |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              | Equipment               |                 |              |           |                   |            |               |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              | maintenance, contracts  |                 |              |           |                   |            |               |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              | and agreements          | 1               |              | LS        | \$                | 10,000     | \$ 10,000     |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
| Miscellaneous O&M                                                            | Pumps parts and         |                 |              |           |                   |            |               |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              | replacement, materials, |                 |              |           |                   |            |               |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              | for new facility        |                 |              |           |                   |            |               |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              |                         | 1               |              | LS        | \$                | 5,000      | \$ 5,000      |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              |                         |                 | r            | Sub-To    | otal Regu         | latory Re  | quirements =  | Ş   | 15,000                              |                                                       |                |                   |                                                                                |  |  |  |  |
| Labour                                                                       | Labour                  | 1               |              | LS        |                   |            | \$ 50.000     |     |                                     | Assum                                                 | ned            |                   |                                                                                |  |  |  |  |
|                                                                              |                         |                 |              | Sub-To    | otal Regu         | latory Re  | quirements =  | \$  | 50,000                              |                                                       |                |                   |                                                                                |  |  |  |  |
| Lab and reporting 1 LS \$ 2,500 \$ 2,500                                     |                         |                 |              |           |                   |            |               |     |                                     |                                                       |                |                   |                                                                                |  |  |  |  |
| Regulatory Requirements                                                      |                         |                 |              | Sub-To    | otal Regu         | latory Re  | quirements =  | \$  | 2,500                               |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              |                         |                 | TOTA         | LO&MCC    | OST IN C          | URRENT     | YEAR (2018) = | \$  | 79,500                              |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              |                         |                 |              |           |                   | Contin     | gency (20%) = | \$  | 15,900                              |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              |                         |                 | TOTA         |           |                   |            | YEAR (2018) - | s   | 95,400                              |                                                       |                |                   |                                                                                |  |  |  |  |
|                                                                              |                         |                 | .014         | _ 00m 00  |                   | S.ARLINE I |               |     | 00,400                              |                                                       |                |                   |                                                                                |  |  |  |  |

| ect Title:                 | Puslinch Water and Sewage Feasibility     | / Study              |                |                      |                           |
|----------------------------|-------------------------------------------|----------------------|----------------|----------------------|---------------------------|
| ent:                       | Township of Puslinch                      |                      |                |                      |                           |
| ject No.:                  | T000866A                                  |                      |                |                      |                           |
| k:                         | Water Servcing Option Development - Op    | tion 2 Probable Cost |                |                      |                           |
| bared By:                  | Sandra Rodriguez                          |                      |                | Date:                | 8-Feb-18                  |
| viewed by:                 | S. Winchester                             |                      |                | Date:                | 27-Feb-18                 |
| vision No. :               | 2                                         |                      |                | Revision Date:       | 28-Feb-18                 |
|                            |                                           |                      |                |                      |                           |
|                            |                                           |                      |                |                      |                           |
| tion 1B - Inter-Municipal  | System                                    |                      |                |                      |                           |
| nomic Factors              |                                           |                      |                |                      |                           |
| terest rate (%)            | 6%                                        |                      |                |                      |                           |
| flation rate (%)           | 2.0%                                      |                      |                |                      |                           |
| oject Start Year (Year n)  | 2020                                      |                      |                |                      |                           |
| lanning Period (yrs)       | 20                                        |                      |                |                      |                           |
| t in Voor n - Cost in Curr | ant Voar x (1+inflation Pate)//Voar n - C | urrent Vear)         |                |                      |                           |
|                            |                                           | urrent reary         |                |                      |                           |
| sent Value = Cost /((1+In  | terest Rate)^(Year n - Current Year))     |                      |                |                      |                           |
|                            |                                           |                      |                |                      |                           |
|                            | 1                                         | 20                   | 0-Year NPV     | ſ                    |                           |
| Year                       | Capital Cost                              | NPV Capital Cost     | Operating Cost | NPV Operating Cost   | Capital and Operating NPV |
| 2018                       | \$29,632,200                              |                      | \$95,400       |                      |                           |
| 2019                       | \$0                                       |                      | \$0            |                      |                           |
| 2020                       | \$30,829,341                              | \$27,438,004         | \$99,254       | \$88,336             | \$27,526,339              |
| 2021                       | \$0                                       | \$0                  | \$101,239      | \$85,002             | \$85,002                  |
| 2022                       | \$0                                       | \$0                  | \$103,264      | \$81,795             | \$81,795                  |
| 2023                       | \$0                                       | \$0                  | \$105,329      | \$78,708             | \$78,708                  |
| 2024                       | \$0                                       | \$0                  | \$107.436      | \$75.738             | \$75,738                  |
| 2025                       | \$0                                       | \$0                  | \$109.585      | \$72.880             | \$72.880                  |
| 2026                       | \$0                                       | \$0                  | \$111,776      | \$70,130             | \$70,130                  |
| 2027                       | \$0                                       | \$0                  | \$114.012      | \$67,483             | \$67,483                  |
| 2028                       | \$0                                       | \$0                  | \$116,292      | \$64,937             | \$64,937                  |
| 2029                       | \$0                                       | \$0                  | \$118.618      | \$62,486             | \$62,486                  |
| 2020                       | \$697.533                                 | \$346 653            | \$120,990      | \$60,128             | \$406 781                 |
| 2030                       | \$0                                       | \$0                  | \$123,410      | \$57,859             | \$57,859                  |
| 2032                       | \$0                                       | \$0                  | \$125,878      | \$55.676             | \$55.676                  |
| 2032                       | \$0                                       | \$0                  | \$128,396      | \$53,575             | \$53,575                  |
| 2033                       | \$0                                       | 0                    | \$130,964      | \$51,553             | \$51,553                  |
| 2034                       | \$0                                       | \$0                  | \$133,583      | \$49,608             | \$49,608                  |
| 2033                       | 02                                        | φυ<br>Φ0             | \$136,355      | \$47,736             | \$47,736                  |
| 2050                       | 90<br>02                                  | φυ<br>©0             | \$130,233      | \$41,730             | \$41,130<br>\$45,035      |
| 2057                       | 90<br>0.9                                 | φυ<br>¢0             | \$130,900      | \$40,900<br>\$44,004 | \$40,800<br>\$44,004      |
| 2038                       | 0.4                                       | φ0                   | \$141,/39      | \$44,201             | \$44,∠U1<br>€40,522       |
| 2039                       | ου<br>Φ050 200                            | ¢005 050             | \$ 144,595     | \$42,533<br>€40,000  | \$42,533                  |
| 2040                       | \$850,289                                 | \$235,959            | \$147,480      | \$40,928             | \$276,888                 |
|                            | Sub-Iotal NPV value =                     | \$28,020,010         | 420 247 020    | \$1,297,230          | 600 247 05 c              |
|                            | rotal NPV value (20 years) =              |                      | \$29,317,900   |                      | \$29,317,900              |
|                            |                                           |                      |                |                      |                           |
| tal Cost Breakdown Eve     | ery 10 Years :                            | Cost overy 10 years  | Commonte       |                      |                           |
| Pump House                 |                                           | cost every to years  | comments       |                      |                           |
|                            |                                           | <b>*</b> 50,000      | A              |                      |                           |

| PS building envelope, equipment =                 | \$50,000  | Assumed |
|---------------------------------------------------|-----------|---------|
| Elevated Tank (inspection, coating, etc.) =       | \$500,000 |         |
| Total Capital Cost New Well Pump House / 10 years | \$550,000 |         |
|                                                   |           |         |

Total Additional Capital Cost / 10 years = \$550,000

### WATER SERVICING INFRASTRUCTURE AVERAGE UNIT PRICES (2018 - Southwestern Region)

#### A) Watermain Installation with Minimum Restoration (Top Soil and Seed only) (FOR INSTALLATION IN DITCHES)

|     | Nom. Pipe | Outer    | Depth to | Minimum      | Exca              | vation | Bec               | lding  | P        | ipe          | Bad               | :kfill | Restoration | Subtotal Unit | Appurtenance | Subtotal Unit | Dewatering | Subtotal Unit | Conting | Eng.   | TOTAL (excl. |
|-----|-----------|----------|----------|--------------|-------------------|--------|-------------------|--------|----------|--------------|-------------------|--------|-------------|---------------|--------------|---------------|------------|---------------|---------|--------|--------------|
|     | Size      | Diameter | Invert   | Trench Width | Vol.              | Cost   | Vol.              | Cost   | Cost     | Installation | Vol.              | Cost   | Allowance   | Cost          | Allowance    | Cost          | Allowance  | Cost          | @20%    | @15%   | HST)         |
|     | (mm)      | (m)      | (m)      | (m)          | (m <sup>3</sup> ) | (\$/m) | (m <sup>3</sup> ) | (\$/m) | (\$/m)   | (\$/m)       | (m <sup>3</sup> ) | (\$/m) | (\$/m)      | (\$/m)        | (\$/m)       | (\$/m)        | (\$/m)     | (\$/m)        | (\$/m)  | (\$/m) | (\$/m)       |
|     | 100       | 0.14     | 2.4      | 0.74         | 2.8               | 16.80  | 0.44              | 19.70  | 24.80    | 2.48         | 2.80              | 14.00  | 40.00       | 117.78        | 59.00        | 176.78        | 10         | 186.78        | 37.40   | 33.60  | 260.00       |
|     | 150       | 0.20     | 2.4      | 0.80         | 3.10              | 18.60  | 0.52              | 23.40  | 38.25    | 3.83         | 2.85              | 14.30  | 40.00       | 138.38        | 59.00        | 197.38        | 10         | 207.38        | 41.50   | 31.11  | 280.00       |
|     | 200       | 0.26     | 2.4      | 0.86         | 3.4               | 20.40  | 0.61              | 27.50  | 63.00    | 6.30         | 2.90              | 14.50  | 40.00       | 171.70        | 64.00        | 235.70        | 10         | 245.70        | 49.10   | 36.86  | 340.00       |
|     | 250       | 0.33     | 2.4      | 0.93         | 3.7               | 22.20  | 0.73              | 32.70  | 91.00    | 9.10         | 2.95              | 14.80  | 40.00       | 209.80        | 67.00        | 276.80        | 10         | 286.80        | 57.40   | 43.02  | 390.00       |
| DVC | 300       | 0.38     | 2.4      | 0.98         | 4.0               | 24.00  | 0.81              | 36.70  | 124.50   | 12.45        | 3.00              | 15.00  | 40.00       | 252.65        | 80.00        | 332.65        | 15         | 347.65        | 69.50   | 52.15  | 470.00       |
| PVC | 350       | 0.45     | 2.4      | 1.05         | 4.4               | 26.40  | 0.94              | 42.60  | 279.00   | 27.90        | 3.00              | 15.00  | 40.00       | 430.90        | 85.00        | 515.90        | 15         | 530.90        | 106.20  | 79.64  | 720.00       |
|     | 400       | 0.50     | 2.4      | 1.10         | 4.5               | 27.00  | 1.04              | 47.10  | 312.00   | 31.20        | 3.05              | 15.30  | 40.00       | 472.60        | 103.00       | 575.60        | 15         | 590.60        | 118.10  | 88.59  | 800.00       |
|     | 450       | 0.55     | 2.4      | 1.15         | 4.6               | 27.60  | 1.15              | 51.80  | 385.00   | 38.50        | 3.05              | 15.30  | 40.00       | 558.20        | 123.00       | 681.20        | 15         | 696.20        | 139.20  | 104.43 | 940.00       |
|     | 500       | 0.60     | 2.4      | 1.20         | 4.9               | 29.40  | 1.26              | 56.70  | 450.00   | 45.00        | 3.05              | 15.30  | 40.00       | 636.40        | 134.00       | 770.40        | 20         | 790.40        | 158.10  | 118.56 | 1,070.00     |
|     | 600       | 0.73     | 2.4      | 1.33         | 5.8               | 34.80  | 1.57              | 70.70  | 719.00   | 71.90        | 3.05              | 15.30  | 40.00       | 951.70        | 174.00       | 1,125.70      | 20         | 1,145.70      | 229.10  | 171.86 | 1,550.00     |
| CDD | 750       | 0.90     | 2.4      | 1.50         | 7.0               | 42.00  | 2.02              | 91.20  | 850.00   | 85.00        | 3.00              | 15.00  | 40.00       | 1,123.20      | 150.00       | 1,273.20      | 20         | 1,293.20      | 258.60  | 193.98 | 1,750.00     |
| CFF | 900       | 1.10     | 3.0      | 1.70         | 8.7               | 52.20  | 2.63              | 118.60 | 1,000.00 | 100.00       | 3.35              | 16.80  | 40.00       | 1,327.60      | 180.00       | 1,507.60      | 20         | 1,527.60      | 305.50  | 229.14 | 2,070.00     |

#### B) Watermain Installation with Granular Road Restoration

|     | Nom. Pipe | Outer    | Depth to | Minimum      | Exca              | vation | Bed               | ding   | P        | ipe          | Ba                | ckfill | Restoration | Subtotal Unit | Appurtenance | Subtotal Unit | Dewatering | Subtotal Unit | Conting | Eng.   | TOTAL (excl. |
|-----|-----------|----------|----------|--------------|-------------------|--------|-------------------|--------|----------|--------------|-------------------|--------|-------------|---------------|--------------|---------------|------------|---------------|---------|--------|--------------|
|     | Size      | Diameter | Invert   | Trench Width | Vol.              | Cost   | Vol.              | Cost   | Cost     | Installation | Vol.              | Cost   | Allowance   | Cost          | Allowance    | Cost          | Allowance  | Cost          | @20%    | @15%   | HST)         |
|     | (mm)      | (m)      | (m)      | (m)          | (m <sup>3</sup> ) | (\$/m) | (m <sup>3</sup> ) | (\$/m) | (\$/m)   | (\$/m)       | (m <sup>3</sup> ) | (\$/m) | (\$/m)      | (\$/m)        | (\$/m)       | (\$/m)        | (\$/m)     | (\$/m)        | (\$/m)  | (\$/m) | (\$/m)       |
|     | 100       | 0.14     | 2.4      | 0.74         | 2.8               | 16.80  | 0.44              | 19.70  | 24.80    | 2.48         | 2.80              | 14.00  | 72.00       | 149.78        | 59.00        | 208.78        | 10         | 218.78        | 43.80   | 39.40  | 310.00       |
|     | 150       | 0.20     | 2.4      | 0.80         | 3.10              | 18.60  | 0.52              | 23.40  | 38.25    | 3.83         | 2.85              | 14.30  | 72.00       | 170.38        | 59.00        | 229.38        | 10         | 239.38        | 47.90   | 35.91  | 330.00       |
|     | 200       | 0.26     | 2.4      | 0.86         | 3.4               | 20.40  | 0.61              | 27.50  | 63.00    | 6.30         | 2.90              | 14.50  | 72.00       | 203.70        | 64.00        | 267.70        | 10         | 277.70        | 55.50   | 41.66  | 380.00       |
|     | 250       | 0.33     | 2.4      | 0.93         | 3.7               | 22.20  | 0.73              | 32.70  | 91.00    | 9.10         | 2.95              | 14.80  | 72.00       | 241.80        | 67.00        | 308.80        | 10         | 318.80        | 63.80   | 47.82  | 440.00       |
| DVC | 300       | 0.38     | 2.4      | 0.98         | 4.0               | 24.00  | 0.81              | 36.70  | 124.50   | 12.45        | 3.00              | 15.00  | 72.00       | 284.65        | 80.00        | 364.65        | 15         | 379.65        | 75.90   | 56.95  | 520.00       |
| PVC | 350       | 0.45     | 2.4      | 1.05         | 4.4               | 26.40  | 0.94              | 42.60  | 279.00   | 27.90        | 3.00              | 15.00  | 72.00       | 462.90        | 105.00       | 567.90        | 15         | 582.90        | 116.60  | 87.44  | 790.00       |
|     | 400       | 0.50     | 2.4      | 1.10         | 4.5               | 27.00  | 1.04              | 47.10  | 312.00   | 31.20        | 3.05              | 15.30  | 72.00       | 504.60        | 123.00       | 627.60        | 15         | 642.60        | 128.50  | 96.39  | 870.00       |
|     | 450       | 0.55     | 2.4      | 1.15         | 4.6               | 27.60  | 1.15              | 51.80  | 385.00   | 38.50        | 3.05              | 15.30  | 72.00       | 590.20        | 153.00       | 743.20        | 15         | 758.20        | 151.60  | 113.73 | 1,030.00     |
|     | 500       | 0.60     | 2.4      | 1.20         | 4.9               | 29.40  | 1.26              | 56.70  | 450.00   | 45.00        | 3.05              | 15.30  | 72.00       | 668.40        | 164.00       | 832.40        | 20         | 852.40        | 170.50  | 127.86 | 1,160.00     |
|     | 600       | 0.73     | 2.4      | 1.33         | 5.8               | 34.80  | 1.57              | 70.70  | 719.00   | 71.90        | 3.05              | 15.30  | 72.00       | 983.70        | 194.00       | 1,177.70      | 20         | 1,197.70      | 239.50  | 179.66 | 1,620.00     |
| CDD | 750       | 0.90     | 2.4      | 1.50         | 7.0               | 42.00  | 2.02              | 91.20  | 850.00   | 85.00        | 3.00              | 15.00  | 72.00       | 1,155.20      | 150.00       | 1,305.20      | 20         | 1,325.20      | 265.00  | 198.78 | 1,790.00     |
| GPP | 900       | 1.10     | 3.0      | 1.70         | 8.7               | 52.20  | 2.63              | 118.60 | 1,000.00 | 100.00       | 3.35              | 16.80  | 72.00       | 1,359.60      | 180.00       | 1,539.60      | 20         | 1,559.60      | 311.90  | 233.94 | 2,110.00     |

#### C) Watermain Installation with with Road Restoration (Assumes 1 Lane restored, along with Curb & Gutter, and Sidewalk one side)

|     | Nom. Pipe | Outer    | Depth to | Minimum      | Exca              | vation | Bec               | lding  | Pi       | ipe          | Ba                | ckfill | Restoration | Subtotal Unit | Appurtenance | Subtotal Unit | Dewatering | Subtotal Unit | Conting | Eng.   | TOTAL (excl. |
|-----|-----------|----------|----------|--------------|-------------------|--------|-------------------|--------|----------|--------------|-------------------|--------|-------------|---------------|--------------|---------------|------------|---------------|---------|--------|--------------|
|     | Size      | Diameter | Invert   | Trench Width | Vol.              | Cost   | Vol.              | Cost   | Cost     | Installation | Vol.              | Cost   | Allowance   | Cost          | Allowance    | Cost          | Allowance  | Cost          | @20%    | @15%   | HST)         |
|     | (mm)      | (m)      | (m)      | (m)          | (m <sup>3</sup> ) | (\$/m) | (m <sup>3</sup> ) | (\$/m) | (\$/m)   | (\$/m)       | (m <sup>3</sup> ) | (\$/m) | (\$/m)      | (\$/m)        | (\$/m)       | (\$/m)        | (\$/m)     | (\$/m)        | (\$/m)  | (\$/m) | (\$/m)       |
|     | 100       | 0.14     | 2.4      | 0.74         | 2.8               | 16.80  | 0.44              | 19.70  | 24.80    | 2.48         | 2.80              | 14.00  | 214.12      | 291.90        | 59.00        | 350.90        | 10         | 360.90        | 72.20   | 65.00  | 500.00       |
|     | 150       | 0.20     | 2.4      | 0.80         | 3.1               | 18.60  | 0.52              | 23.40  | 38.25    | 3.83         | 2.85              | 14.30  | 214.12      | 312.50        | 59.00        | 371.50        | 10         | 381.50        | 76.30   | 57.22  | 520.00       |
|     | 200       | 0.26     | 2.4      | 0.86         | 3.4               | 20.40  | 0.61              | 27.50  | 63.00    | 6.30         | 2.90              | 14.50  | 214.12      | 345.82        | 64.00        | 409.82        | 10         | 419.82        | 84.00   | 62.97  | 570.00       |
|     | 250       | 0.33     | 2.4      | 0.93         | 3.7               | 22.20  | 0.73              | 32.70  | 91.00    | 9.10         | 2.95              | 14.80  | 214.12      | 383.92        | 67.00        | 450.92        | 10         | 460.92        | 92.20   | 69.14  | 630.00       |
| DVC | 300       | 0.38     | 2.4      | 0.98         | 4.0               | 24.00  | 0.81              | 36.70  | 124.50   | 12.45        | 3.00              | 15.00  | 214.12      | 426.77        | 80.00        | 506.77        | 15         | 521.77        | 104.40  | 78.27  | 710.00       |
| PVC | 350       | 0.45     | 2.4      | 1.05         | 4.4               | 26.40  | 0.94              | 42.60  | 279.00   | 27.90        | 3.00              | 15.00  | 214.12      | 605.02        | 105.00       | 710.02        | 15         | 725.02        | 145.00  | 108.75 | 980.00       |
|     | 400       | 0.50     | 2.4      | 1.10         | 4.5               | 27.00  | 1.04              | 47.10  | 312.00   | 31.20        | 3.05              | 15.30  | 214.12      | 646.72        | 123.00       | 769.72        | 15         | 784.72        | 156.90  | 117.71 | 1,060.00     |
|     | 450       | 0.55     | 2.4      | 1.15         | 4.6               | 27.60  | 1.15              | 51.80  | 385.00   | 38.50        | 3.05              | 15.30  | 214.12      | 732.32        | 153.00       | 885.32        | 15         | 900.32        | 180.10  | 135.05 | 1,220.00     |
|     | 500       | 0.60     | 2.4      | 1.20         | 4.9               | 29.40  | 1.26              | 56.70  | 450.00   | 45.00        | 3.05              | 15.30  | 214.12      | 810.52        | 164.00       | 974.52        | 20         | 994.52        | 198.90  | 149.18 | 1,350.00     |
|     | 600       | 0.73     | 2.4      | 1.33         | 5.8               | 34.80  | 1.57              | 70.70  | 719.00   | 71.90        | 3.05              | 15.30  | 214.12      | 1,125.82      | 194.00       | 1,319.82      | 20         | 1,339.82      | 268.00  | 200.97 | 1,810.00     |
| CPP | 750       | 0.90     | 2.4      | 1.50         | 7                 | 42.00  | 2.02              | 91.20  | 850.00   | 85.00        | 3.00              | 15.00  | 214.12      | 1,297.32      | 150.00       | 1,447.32      | 20         | 1,467.32      | 293.50  | 220.10 | 1,990.00     |
| CPP | 900       | 1.10     | 3.0      | 1.70         | 8.7               | 52.20  | 2.63              | 118.60 | 1,000.00 | 100.00       | 3.35              | 16.80  | 214.12      | 1,501.72      | 180.00       | 1,681.72      | 20         | 1,701.72      | 340.30  | 255.26 | 2,300.00     |

#### Notes

1) Cost of excavation: \$6/m3

Cost of bedding/pipe surrounding: \$45/m3 includes supply and place
 PvVC Pipe (up to 600 mm) Cost provided by IPEX on 30 Oct 17
 Pipe Installation Allowance based on 10% of pipe cost
 Backfill trench \$5/m5 based on replacement of native material and compaction

Prepared By: D. Prashad S. Winchester Date: 30-Nov-17 Checked By: Date:

6) Includes costs for mainline valves and hydrant sets. No hydrants connected to 750mm and larger mains. Service connections and special appurtenances excluded 7) Restoration for route along existing road allowance (Cost varies with type of restoration). Minimum 4.0m width of restoration (2.0m trench plus 1.0 m each side)

8) Includes allowance for dewatering

9) PVC DR18 (100mm to 600mm)



### WASTEWATER SERVICING INFRASTRUCTURE - Average Unit Prices (Southwestern Ontarion Region) for 2018

| Nom.      | Depth to | Shoring        | Outer            | Exca | /ation | Granular | Bed. Surr. | Backf | ill    | F      | Pipe                      |                 |          |                         | TOTAL                      |                     | TOTAL                   |
|-----------|----------|----------------|------------------|------|--------|----------|------------|-------|--------|--------|---------------------------|-----------------|----------|-------------------------|----------------------------|---------------------|-------------------------|
| Pipe Size | Invert   | System<br>Cost | pipe<br>Diameter | Vol. | Cost   | Vol.     | Cost       | Vol.  | Cost   | Cost   | Installation<br>Allowance | MH<br>Allowance | Subtotal | Dewatering<br>Allowance | (excluding<br>restoration) | Road<br>Restoration | (including restoration) |
| (mm)      | (m)      | (\$/m)         | (m)              | (m3) | (\$/m) | (m3)     | (\$/m)     | (m3)  | (\$/m) | (\$/m) | (\$/m)                    | (\$/m)          | (\$/m)   | (\$/m)                  | (\$/m)                     | (\$/m)              | (\$/m)                  |
|           |          |                |                  |      |        |          |            |       |        |        |                           |                 |          |                         |                            |                     |                         |
| 200       | 5        | 10.00          | 0.213            | 6.2  | 37.20  | 0.6      | 27.00      | 5.6   | 28.00  | 55.65  | 5.57                      | 94.00           | 257.42   | 20.00                   | 280                        | 214                 | 494                     |
| 250       | 5        | 10.00          | 0.267            | 6.2  | 37.2   | 0.7      | 31.5       | 5.5   | 27.5   | 85.30  | 8.53                      | 94.00           | 294.03   | 20.00                   | 320                        | 214                 | 534                     |
| 300       | 5        | 10.00          | 0.318            | 6.2  | 37.20  | 0.8      | 36.00      | 5.4   | 27.00  | 120.25 | 12.03                     | 94.00           | 336.48   | 20.00                   | 360                        | 214                 | 574                     |
| 375       | 5        | 10.00          | 0.389            | 6.2  | 37.20  | 0.9      | 40.50      | 5.3   | 26.50  | 162.45 | 16.25                     | 94.00           | 386.90   | 20.00                   | 410                        | 214                 | 624                     |
| 450       | 5        | 10.00          | 0.622            | 7.3  | 43.80  | 1.2      | 54.00      | 6.1   | 30.50  | 101.30 | 30.39                     | 94.00           | 363.99   | 20.00                   | 390                        | 214                 | 604                     |
| 525       | 5        | 10.00          | 0.711            | 7.8  | 46.80  | 1.4      | 63.00      | 6.4   | 32.00  | 129.00 | 38.70                     | 135.00          | 454.50   | 20.00                   | 480                        | 214                 | 694                     |
| 600       | 5        | 10.00          | 0.800            | 8.2  | 49.20  | 1.5      | 67.50      | 6.7   | 33.50  | 170.90 | 51.27                     | 135.00          | 517.37   | 20.00                   | 540                        | 214                 | 754                     |
| 675       | 5        | 15.00          | 0.889            | 8.7  | 52.20  | 1.6      | 72.00      | 7.1   | 35.50  | 259.60 | 77.88                     | 135.00          | 647.18   | 20.00                   | 670                        | 271                 | 941                     |
| 750       | 5        | 15.00          | 0.978            | 9.2  | 55.20  | 1.8      | 81.00      | 7.4   | 37.00  | 343.50 | 103.05                    | 135.00          | 769.75   | 20.00                   | 790                        | 271                 | 1,061                   |
| 825       | 5        | 15.00          | 1.067            | 9.6  | 57.60  | 1.9      | 85.50      | 7.7   | 38.50  | 443.40 | 133.02                    | 172.00          | 945.02   | 20.00                   | 970                        | 271                 | 1,241                   |
| 900       | 5        | 15.00          | 1.156            | 10.4 | 62.40  | 2.1      | 94.50      | 8.3   | 41.50  | 478.40 | 143.52                    | 172.00          | 1,007.32 | 20.00                   | 1,030                      | 271                 | 1,301                   |
| 975       | 5        | 20.00          | 1.245            | 10.8 | 64.80  | 2.2      | 99.00      | 8.6   | 43.00  | 549.70 | 164.91                    | 172.00          | 1,113.41 | 20.00                   | 1,140                      | 271                 | 1,411                   |
| 1050      | 5        | 20.00          | 1.334            | 11.3 | 67.80  | 2.4      | 108.00     | 8.9   | 44.50  | 632.00 | 189.60                    | 303.00          | 1,364.90 | 20.00                   | 1,390                      | 271                 | 1,661                   |
| 1200      | 5        | 20.00          | 1.511            | 12.2 | 73.20  | 2.7      | 121.50     | 9.5   | 47.50  | 791.50 | 237.45                    | 303.00          | 1,594.15 | 20.00                   | 1,620                      | 271                 | 1,891                   |
|           |          |                |                  |      |        |          |            |       |        |        |                           |                 |          |                         |                            |                     |                         |
| 200       | 7        | 10.00          | 0.213            | 8.6  | 51.60  | 0.6      | 27.00      | 8.0   | 40.00  | 55.65  | 5.57                      | 150.00          | 339.82   | 20.00                   | 360                        | 214                 | 574                     |
| 250       | 7        | 10.00          | 0.267            | 8.6  | 51.60  | 0.7      | 31.5       | 7.9   | 39.50  | 85.30  | 8.53                      | 150.00          | 376.43   | 20.00                   | 400.00                     | 214                 | 614                     |
| 300       | 7        | 15.00          | 0.318            | 8.6  | 51.60  | 0.8      | 36.00      | 7.8   | 39.00  | 120.25 | 12.03                     | 150.00          | 423.88   | 20.00                   | 450                        | 214                 | 664                     |
| 375       | 7        | 15.00          | 0.389            | 8.6  | 51.60  | 0.9      | 40.50      | 7.7   | 38.50  | 162.45 | 16.25                     | 150.00          | 474.30   | 20.00                   | 500                        | 214                 | 714                     |
| 450       | 7        | 15.00          | 0.622            | 10.2 | 61.20  | 1.2      | 54.00      | 9.0   | 45.00  | 101.30 | 30.39                     | 150.00          | 456.89   | 20.00                   | 480                        | 214                 | 694                     |
| 525       | 7        | 15.00          | 0.711            | 10.8 | 64.80  | 1.4      | 63.00      | 9.4   | 47.00  | 129.00 | 38.70                     | 189.00          | 546.50   | 20.00                   | 570                        | 214                 | 784                     |
| 600       | 7        | 20.00          | 0.800            | 11.4 | 68.40  | 1.5      | 67.50      | 9.9   | 49.50  | 170.90 | 51.27                     | 189.00          | 616.57   | 20.00                   | 640                        | 214                 | 854                     |
| 675       | 7        | 20.00          | 0.889            | 12.1 | 72.60  | 1.6      | 72.00      | 10.5  | 52.50  | 259.60 | 77.88                     | 189.00          | 743.58   | 20.00                   | 770                        | 271                 | 1,041                   |
| 750       | 7        | 20.00          | 0.978            | 12.7 | 76.20  | 1.8      | 81.00      | 10.9  | 54.50  | 343.50 | 103.05                    | 189.00          | 867.25   | 20.00                   | 890                        | 271                 | 1,161                   |
| 825       | 7        | 20.00          | 1.067            | 13.3 | 79.80  | 1.9      | 85.50      | 11.4  | 57.00  | 443.40 | 133.02                    | 226.00          | 1,044.72 | 20.00                   | 1,070                      | 271                 | 1,341                   |
| 900       | 7        | 30.00          | 1.156            | 14.3 | 85.80  | 2.1      | 94.50      | 12.2  | 61.00  | 478.40 | 143.52                    | 226.00          | 1,119.22 | 20.00                   | 1,140                      | 271                 | 1,411                   |
| 975       | 7        | 30.00          | 1.245            | 14.9 | 89.40  | 2.2      | 99.00      | 12.7  | 63.50  | 549.70 | 164.91                    | 226.00          | 1,222.51 | 20.00                   | 1,250                      | 271                 | 1,521                   |
| 1050      | 7        | 40.00          | 1.334            | 15.6 | 93.60  | 2.4      | 108.00     | 13.2  | 66.00  | 632.00 | 189.60                    | 356.00          | 1,485.20 | 20.00                   | 1,510                      | 271                 | 1,781                   |
| 1200      | 7        | 40.00          | 1.511            | 16.9 | 101.40 | 2.7      | 121.50     | 14.2  | 71.00  | 791.50 | 237.45                    | 356.00          | 1,718.85 | 20.00                   | 1,740                      | 271                 | 2,011                   |

Notes

1) Cost of excavation \$6/m<sup>3</sup>

2) For 200mm to 375 mm sewer pipe, supply cost taken from Royal Pipe Products (PVC) 2018 Price 6) Manhole Spacing 100 m Installation Cost 10% of pipe supply cost

3) For sewer pipe 450mm dia and larger, supply cost taken from M-Con Products 2017 Price list for Installation Cost 30% of pipe cost for concrete pipe

4) Backfill trench \$5/m3 based on replacement of native material and compaction

5) Cost of granular bedding \$45/m<sup>3</sup>

7) Service Laterals excluded from this estimate,

8) Restoration cost for sewers 600mm dia and smaller includes 300mm subbase, 150mm base, 60mm binder, and 40mm binder 9) Restoration cost for sewers larger than 600mm dia includes 450mm subbase, 150mm base, 100mm binder, and 40mm surface 10) Engineering and HST not included

| Prepared By: | S. Mayirou    | Date: | 9/1/2018 |
|--------------|---------------|-------|----------|
| Checked By:  | S. Winchester | Date: | 15/01/18 |

| MH | Dia | Depth | List Price <sup>1</sup> | Additional<br>Items <sup>2</sup> | Sub-Total _<br>Supply Cost | Installation<br>@ 100% | Total Cost per<br>Installed | Cost per m |
|----|-----|-------|-------------------------|----------------------------------|----------------------------|------------------------|-----------------------------|------------|
|    | 120 | 0 5   | \$3,834.00              | \$862.80                         | \$4,696.80                 | \$4,696.80             | \$9,400.00                  | \$94.00    |
|    | 150 | 0 5   | \$5,630.00              | \$1,112.80                       | \$6,742.80                 | \$6,742.80             | \$13,500.00                 | \$135.00   |
|    | 180 | 0 5   | \$7,128.00              | \$1,462.80                       | \$8,590.80                 | \$8,590.80             | \$17,200.00                 | \$172.00   |
|    | 240 | 0 5   | \$13,265.00             | \$1,862.80                       | \$15,127.80                | \$15,127.80            | \$30,300.00                 | \$303.00   |
|    | 120 | 0 7   | \$6,593.00              | \$862.80                         | \$7,455.80                 | \$7,455.80             | \$15,000.00                 | \$150.00   |
|    | 150 | 0 7   | \$8,293.00              | \$1,112.80                       | \$9,405.80                 | \$9,405.80             | \$18,900.00                 | \$189.00   |
|    | 180 | 0 7   | \$9,791.00              | \$1,462.80                       | \$11,253.80                | \$11,253.80            | \$22,600.00                 | \$226.00   |
|    | 240 | 0 7   | \$15,927.00             | \$1,862.80                       | \$17,789.80                | \$17,789.80            | \$35,600.00                 | \$356.00   |

Note:

1 Based on 2017 List Price from M-Con Products. Safety Landing included for MH depths > 5.0 m 2 Allowance for castings, grade rings, benching, flexible connectors

#### Flexible Connectors

 300
 \$312.30

 375
 \$375.30

 450
 \$474.80

 525
 \$560.50

 600
 \$664.40

 675
 Not listed

 750
 Not listed

 825
 Not listed

 900
 Not listed

 975
 Not listed

 1050
 Not listed

 1200
 Not listed

#### Excavation Quantities for Sewers laid at Different Depths

### For Depth to Invert = 5.0 m

| Nom.<br>Pipe<br>Size | Outer<br>Pipe<br>Dia. | Depth<br>To<br>Invert | Bot   | tom Tre | nch  | Mic   | idle Trei | nch  |                 | Тор Т        | rench |      | Total<br>Area |
|----------------------|-----------------------|-----------------------|-------|---------|------|-------|-----------|------|-----------------|--------------|-------|------|---------------|
|                      |                       |                       | Width | Depth   | Area | Width | Depth     | Area | Bottom<br>Width | Top<br>Width | Depth | Area |               |
| mm                   | m                     | m                     | m     | m       | m2   | m     | m         | m2   | m               | m            | m     | m2   | m2            |
| 200                  | 0.260                 | 5                     | 1.010 | 1       | 1.0  | 1.510 | 3         | 4.5  | 1.510           | 3.510        | 1     | 2.5  | 8.1           |
| 250                  | 0.318                 | 5                     | 1.068 | 1       | 1.1  | 1.568 | 3         | 4.7  | 1.568           | 3.568        | 1     | 2.6  | 8.3           |
| 300                  | 0.445                 | 5                     | 1.195 | 1       | 1.2  | 1.695 | 3         | 5.1  | 1.695           | 3.695        | 1     | 2.7  | 9.0           |
| 375                  | 0.520                 | 5                     | 1.270 | 1       | 1.3  | 1.770 | 3         | 5.3  | 1.770           | 3.770        | 1     | 2.8  | 9.4           |
| 450                  | 0.580                 | 5                     | 1.330 | 1       | 1.3  | 1.830 | 3         | 5.5  | 1.830           | 3.830        | 1     | 2.8  | 9.7           |
| 525                  | 0.665                 | 5                     | 1.415 | 1       | 1.4  | 1.915 | 3         | 5.7  | 1.915           | 3.915        | 1     | 2.9  | 10.1          |
| 600                  | 0.755                 | 5                     | 1.505 | 1       | 1.5  | 2.005 | 3         | 6.0  | 2.005           | 4.005        | 1     | 3.0  | 10.5          |
| 675                  | 0.880                 | 5                     | 1.630 | 1       | 1.6  | 2.130 | 3         | 6.4  | 2.130           | 4.130        | 1     | 3.1  | 11.2          |
| 750                  | 0.970                 | 5                     | 1.720 | 1       | 1.7  | 2.220 | 3         | 6.7  | 2.220           | 4.220        | 1     | 3.2  | 11.6          |
| 825                  | 1.055                 | 5                     | 1.805 | 1       | 1.8  | 2.305 | 3         | 6.9  | 2.305           | 4.305        | 1     | 3.3  | 12.0          |
|                      |                       |                       |       |         |      |       |           |      |                 |              |       |      |               |

#### For Depth to Invert = 7.0 m

| Nom.<br>Pipe | Outer<br>Pipe | Depth<br>To | Bot   | tom Tre | nch  | Mic   | dle Trei | nch  |        | Тор Т | rench |      | Total<br>Area |
|--------------|---------------|-------------|-------|---------|------|-------|----------|------|--------|-------|-------|------|---------------|
| Size         | Dia.          | Invert      |       |         |      |       |          |      |        |       |       |      |               |
|              |               |             | Width | Depth   | Area | Width | Depth    | Area | Bottom | Тор   | Depth | Area |               |
|              |               |             |       |         |      |       |          | -    | width  | wiath |       | -    | _             |
| mm           | m             | m           | m     | m       | m2   | m     | m        | m2   | m      | m     | m     | m2   | m2            |
|              |               |             |       |         |      |       |          |      |        |       |       |      |               |
| 250          | 0.318         | 7           | 1.068 | 1       | 1.1  | 1.568 | 5        | 7.8  | 1.568  | 3.568 | 1     | 2.6  | 11.5          |
| 300          | 0.445         | 7           | 1.195 | 1       | 1.2  | 1.695 | 5        | 8.5  | 1.695  | 3.695 | 1     | 2.7  | 12.4          |
| 375          | 0.520         | 7           | 1.270 | 1       | 1.3  | 1.770 | 5        | 8.9  | 1.770  | 3.770 | 1     | 2.8  | 12.9          |
| 450          | 0.580         | 7           | 1.330 | 1       | 1.3  | 1.830 | 5        | 9.2  | 1.830  | 3.830 | 1     | 2.8  | 13.3          |
| 525          | 0.665         | 7           | 1.415 | 1       | 1.4  | 1.915 | 5        | 9.6  | 1.915  | 3.915 | 1     | 2.9  | 13.9          |
| 600          | 0.755         | 7           | 1.505 | 1       | 1.5  | 2.005 | 5        | 10.0 | 2.005  | 4.005 | 1     | 3.0  | 14.5          |
| 675          | 0.880         | 7           | 1.630 | 1       | 1.6  | 2.130 | 5        | 10.7 | 2.130  | 4.130 | 1     | 3.1  | 15.4          |
| 750          | 0.970         | 7           | 1.720 | 1       | 1.7  | 2.220 | 5        | 11.1 | 2.220  | 4.220 | 1     | 3.2  | 16.0          |
| 825          | 1.055         | 7           | 1.805 | 1       | 1.8  | 2.305 | 5        | 11.5 | 2.305  | 4.305 | 1     | 3.3  | 16.6          |
|              |               |             |       |         |      |       |          |      |        |       |       |      |               |

### For Depth to Invert = 9.0 m

| Nom.<br>Pipe<br>Size | Outer<br>Pipe<br>Dia. | Depth<br>To<br>Invert | Bottom Trench |       |      | Middle Trench |       |      | Top Trench      |              |       |      | Total<br>Area |
|----------------------|-----------------------|-----------------------|---------------|-------|------|---------------|-------|------|-----------------|--------------|-------|------|---------------|
|                      |                       |                       | Width         | Depth | Area | Width         | Depth | Area | Bottom<br>Width | Top<br>Width | Depth | Area |               |
| mm                   | m                     | m                     | m             | m     | m2   | m             | m     | m2   | m               | m            | m     | m2   | m2            |
|                      |                       |                       |               |       |      |               |       |      |                 |              |       |      |               |
| 250                  | 0.318                 | 9                     | 1.068         | 1     | 1.1  | 1.568         | 6     | 9.4  | 1.568           | 5.568        | 2     | 7.1  | 17.6          |
| 300                  | 0.445                 | 9                     | 1.195         | 1     | 1.2  | 1.695         | 6     | 10.2 | 1.695           | 5.695        | 2     | 7.4  | 18.8          |
| 375                  | 0.520                 | 9                     | 1.270         | 1     | 1.3  | 1.770         | 6     | 10.6 | 1.770           | 5.770        | 2     | 7.5  | 19.4          |
| 450                  | 0.580                 | 9                     | 1.330         | 1     | 1.3  | 1.830         | 6     | 11.0 | 1.830           | 5.830        | 2     | 7.7  | 20.0          |
| 525                  | 0.665                 | 9                     | 1.415         | 1     | 1.4  | 1.915         | 6     | 11.5 | 1.915           | 5.915        | 2     | 7.8  | 20.7          |
| 600                  | 0.755                 | 9                     | 1.505         | 1     | 1.5  | 2.005         | 6     | 12.0 | 2.005           | 6.005        | 2     | 8.0  | 21.5          |
| 675                  | 0.880                 | 9                     | 1.630         | 1     | 1.6  | 2.130         | 6     | 12.8 | 2.130           | 6.130        | 2     | 8.3  | 22.7          |
| 750                  | 0.970                 | 9                     | 1.720         | 1     | 1.7  | 2.220         | 6     | 13.3 | 2.220           | 6.220        | 2     | 8.4  | 23.5          |
| 825                  | 1.055                 | 9                     | 1.805         | 1     | 1.8  | 2.305         | 6     | 13.8 | 2.305           | 6.305        | 2     | 8.6  | 24.2          |
|                      |                       |                       |               |       |      |               |       |      |                 |              |       |      |               |

#### RESTORATION UNIT COST FOR SEWERS

| Nom. Pipe<br>Size | Outer Pipe<br>Dia. | Depth To<br>Invert | Surface<br>Area of<br>Trench | Topsoil+<br>Seed Cost<br>@ \$7.5/m <sup>2</sup> | Topsoil+<br>Sod Cost @<br>\$10.00/m <sup>2</sup> | Granular Restoration Base<br>& Sub-base |                                             | Asphalt<br>including Granular Base      |                                             |
|-------------------|--------------------|--------------------|------------------------------|-------------------------------------------------|--------------------------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|---------------------------------------------|
|                   |                    |                    |                              |                                                 |                                                  | Local Street<br>@ \$18.0/m <sup>2</sup> | Collector Street<br>@ \$23.4/m <sup>2</sup> | Local Street @<br>\$41.0/m <sup>2</sup> | Collector Street<br>@ \$55.3/m <sup>2</sup> |
| mm                | m                  | m                  | m²/m                         | \$/m                                            | \$/m                                             | \$/m                                    | \$/m                                        | \$/m                                    | \$/m                                        |
| 300               | 0.445              | 5                  | 4.0                          | 30.2                                            | 40.0                                             | 72.0                                    | 93.6                                        | 214.1                                   | 271.0                                       |
| 375               | 0.533              | 5                  | 4.0                          | 30.2                                            | 40.0                                             | 72.0                                    | 93.6                                        | 214.1                                   | 271.0                                       |
| 450               | 0.622              | 5                  | 4.0                          | 30.2                                            | 40.0                                             | 72.0                                    | 93.6                                        | 214.1                                   | 271.0                                       |
| 525               | 0.711              | 5                  | 4.0                          | 30.2                                            | 40.0                                             | 72.0                                    | 93.6                                        | 214.1                                   | 271.0                                       |
| 600               | 0.800              | 5                  | 4.0                          | 30.2                                            | 40.0                                             | 72.0                                    | 93.6                                        | 214.1                                   | 271.0                                       |
| 675               | 0.889              | 5                  | 4.0                          | 30.2                                            | 40.0                                             | 72.0                                    | 93.6                                        | 214.1                                   | 271.0                                       |
| 750               | 0.978              | 5                  | 4.0                          | 30.2                                            | 40.0                                             | 72.0                                    | 93.6                                        | 214.1                                   | 271.0                                       |
| 825               | 1.067              | 5                  | 4.0                          | 30.2                                            | 40.0                                             | 72.0                                    | 93.6                                        | 214.1                                   | 271.0                                       |
| 900               | 1.156              | 5                  | 4.0                          | 30.2                                            | 40.0                                             | 72.0                                    | 93.6                                        | 214.1                                   | 271.0                                       |
| 975               | 1.245              | 5                  | 4.0                          | 30.2                                            | 40.0                                             | 72.0                                    | 93.6                                        | 214.1                                   | 271.0                                       |
| 105               | 1.334              | 5                  | 4.0                          | 30.2                                            | 40.0                                             | 72.0                                    | 93.6                                        | 214.1                                   | 271.0                                       |
| 1200              | 1.511              | 5                  | 4.0                          | 30.2                                            | 40.0                                             | 72.0                                    | 93.6                                        | 214.1                                   | 271.0                                       |
|                   |                    |                    |                              |                                                 |                                                  |                                         |                                             |                                         |                                             |

#### UNIT COST FOR DIFFERENT LAYERS

| Item          | Local      | Street            | Collecto   | or Street | Remarks                                      |                            |  |
|---------------|------------|-------------------|------------|-----------|----------------------------------------------|----------------------------|--|
|               |            | \$/m <sup>2</sup> |            | \$/m²     |                                              |                            |  |
| Subbase       | 300 mm "B" | 10.8              | 450 mm "B" | 16.2      | "B" @ \$15/ton                               | ne (2.4 t/m <sup>3</sup> ) |  |
| Base          | 150 mm "A" | 7.2               | 150 mm "A" | 7.2       | "A" @ \$20/tonne (2.4 t/m <sup>3</sup> )     |                            |  |
| Subtotal      |            | 18.0              |            | 23.4      |                                              |                            |  |
| Binder        | 60 HL4     | 13.2              | 100 HL4    | 22.1      | "HL4" @ \$90/tonne (2.45 t/m <sup>3</sup> )  |                            |  |
| Surface       | 40 HL3     | 9.8               | 40 HL3     | 9.8       | "HL3" @ \$100/tonne (2.45 t/m <sup>3</sup> ) |                            |  |
| Total         |            | 41.0              |            | 55.3      |                                              |                            |  |
| Curb (one sid | e)         | 50.0              |            | 50.0      |                                              |                            |  |
|               |            |                   |            |           |                                              |                            |  |