

Industrial Equities Guelph

Hydrogeological Study: 384 Crawley Road, Guelph

GMBP File: 121123

April 2023

GUELPH | OWEN SOUND | LISTOWEL | KITCHENER |LONDON | HAMILTON | GTA 650 Woodlawn Rd. W., Block C, Unit 2, Guelph ON N1K 1B8 P: 519-824-8150 www.GMBLuePlan.ca

TABLE OF CONTENTS

1.	INTRO	DUCTION	1
1.1	Purp	ose and Scope	1
2.	BACK	GROUND	2
2.1	Site	_ocation and Setting	2
2.2	Prop	osed Development	3
2.3	Geol	ogy and Physiography	3
2.4	Loca	I Relief and Drainage	4
2.5	Loca	I Use of Groundwater	4
2.6	Sour	cewater Protection	5
2.7	Rele	vant Local and Site-Specific Reports	6
2.	7.1	2006 Geotechnical Investigation by Peto MacCallum Ltd.	6
2.	7.2	2010 Hydrogeological Assessment Report by Anderson Geologic Limited	7
2.	7.3	Clair-Maltby Secondary Plan	8
2.	7.4	Infiltration Testing (AECOM)	9
2.	7.5	Environmental Impact Study (NRSI)	9
2.	7.6	Wetland Removal Policy Assessment (NRSI)	. 10
3.	FIELD	INVESTIGATION	.10
3. 3.1		INVESTIGATION	
3.1			. 10
3.1 3.1	Meth	odology Monitoring Well Installation Piezometer Installation	. 10 . 11 . 11
3.1 3. 3.	Meth 1.1	odology Monitoring Well Installation	. 10 . 11 . 11
3.1 3. 3. 3.	Meth 1.1 1.2	odology Monitoring Well Installation Piezometer Installation	. 10 . 11 . 11 . 12
3.1 3. 3. 3. 3.	Meth 1.1 1.2 1.3	odology Monitoring Well Installation Piezometer Installation Groundwater Sampling – Monitoring Wells	. 10 . 11 . 11 . 12 . 12
3.1 3. 3. 3. 3.	Meth 1.1 1.2 1.3 1.4 1.5	odology Monitoring Well Installation Piezometer Installation Groundwater Sampling – Monitoring Wells Groundwater Sampling – Domestic Wells	. 10 . 11 . 11 . 12 . 12 . 12
3.1 3. 3. 3. 3. 3. 3.2	Meth 1.1 1.2 1.3 1.4 1.5	odology Monitoring Well Installation Piezometer Installation Groundwater Sampling – Monitoring Wells Groundwater Sampling – Domestic Wells Surface Water Sampling	. 10 . 11 . 11 . 12 . 12 . 12 . 12
3.1 3. 3. 3. 3. 3. 3.2	Meth 1.1 1.2 1.3 1.4 1.5 Site 2.1	odology Monitoring Well Installation Piezometer Installation Groundwater Sampling – Monitoring Wells Groundwater Sampling – Domestic Wells Surface Water Sampling Reconnaissance	. 10 . 11 . 12 . 12 . 12 . 12 . 12
3.1 3. 3. 3. 3. 3. 3.2 3.2	Meth 1.1 1.2 1.3 1.4 1.5 Site 2.1 Soil 0	odology Monitoring Well Installation Piezometer Installation Groundwater Sampling – Monitoring Wells Groundwater Sampling – Domestic Wells Surface Water Sampling Reconnaissance Wetland Features	. 10 . 11 . 12 . 12 . 12 . 12 . 13 . 13
3.1 3. 3. 3. 3. 3. 3.2 3.2 3.3 3.3 3.4	Meth 1.1 1.2 1.3 1.4 1.5 Site 2.1 Soil 0	odology Monitoring Well Installation Piezometer Installation Groundwater Sampling – Monitoring Wells Groundwater Sampling – Domestic Wells Surface Water Sampling Reconnaissance Wetland Features Conditions	. 10 . 11 . 12 . 12 . 12 . 12 . 12 . 13 . 13 . 14
3.1 3. 3. 3. 3. 3. 3.2 3.3 3.3 3.4 3.4	Meth 1.1 1.2 1.3 1.4 1.5 Site 2.1 Soil 0 Grou	odology Monitoring Well Installation Piezometer Installation Groundwater Sampling – Monitoring Wells Groundwater Sampling – Domestic Wells Surface Water Sampling Reconnaissance Wetland Features Conditions ndwater Levels	. 10 . 11 . 12 . 12 . 12 . 12 . 12 . 13 . 13 . 13 . 14
3.1 3. 3. 3. 3. 3. 3.2 3.3 3.3 3.4 3.4	Meth 1.1 1.2 1.3 1.4 1.5 Site 2.1 Soil 0 Grou 4.1	odology Monitoring Well Installation Piezometer Installation Groundwater Sampling – Monitoring Wells Groundwater Sampling – Domestic Wells Surface Water Sampling Reconnaissance Wetland Features Conditions ndwater Levels Monitoring Wells	. 10 . 11 . 12 . 12 . 12 . 12 . 12 . 12 . 13 . 13 . 14 . 14 . 15
3.1 3. 3. 3. 3. 3.2 3.2 3.3 3.4 3.4 3.4 3.4	Meth 1.1 1.2 1.3 1.4 1.5 Site 2.1 Soil 0 Grou 4.1 4.2 Grou	odology Monitoring Well Installation Piezometer Installation Groundwater Sampling – Monitoring Wells Groundwater Sampling – Domestic Wells Surface Water Sampling Reconnaissance Wetland Features Conditions ndwater Levels Monitoring Wells Piezometers in Wetland Features	. 10 . 11 . 12 . 12 . 12 . 12 . 12 . 13 . 13 . 13 . 14 . 14 . 15 . 16

4.	HYDROGEOLOGICAL CONCEPTUAL MODEL18		
5.	WATER BALANCE		
5.1	Effects of Development on Wetlands Due to Changes in Runoff2		
5.2	Effects of Development Wetlands Due to Changes in Recharge		
6.	GROUNDWATER MOUNDING		
7.	CONSTRUCTION DEWATERING2		
8.	IMPACT ASSESSMENT		
8.1	Rece	eptor Identification and Screening of Impacts	
8.2	Wetl	ands27	
8.	2.1	Impacts Related to Quantity	
8.	2.2	Impacts Related to Quality	
8.3	.3 Municipal Water Resources / Source Water Protection		
		Impacts Related to Quantity	
8.3.2 Impacts Related to Quality		Impacts Related to Quality	
8.4	8.4 Private Water Wells		
8.4.1 Impacts Related to Quantity		Impacts Related to Quantity	
8.4.2 Impacts Related to Quality		Impacts Related to Quality	
8.5 Construction of Development		struction of Development	
8.	5.1	Impacts Related to Quantity	
8.	5.2	Impacts Related to Quality	
9.	SUMN	IARY	
10.	CONC	LUSIONS AND RECOMMENDATIONS	
11.	STAT	EMENT OF LIMITATIONS	
12.	. REFERENCES		

APPENDICES

FIGURES

TABLES

CHARTS

APPENDIX A: PROPOSED SITE PLAN

APPENDIX B: MECP WATER WELL RECORDS

APPENDIX C: EXCERPTS FROM PREVIOUS HYDROGEOLOGICAL STUDY (ANDERSON 2010)

APPENDIX D: EXCERPTS FROM CLAIR-MALTBY SECONDARY PLAN

APPENDIX E1: MONITORING WELL LOGS

APPENDIX E2: RESULTS OF GRAIN SIZE ANALYSES

APPENDIX F1: LABORATORY CERTIFICATES OF ANALYSIS GROUNDWATER FROM MONITORING WELLS

APPENDIX F2: LABORATORY CERTIFICATES OF ANALYSIS SURFACE WATER FROM ON-SITE WETLAND AREAS

APPENDIX F3: LABORATORY CERTIFICATES OF ANALYSIS OFF-SITE PRIVATE WATER WELLS

APPENDIX G: CATCHMENT AREA PLANS

APPENDIX H1: WATER BALANCE CALCULATIONS - PRE-DEVELOPMENT

APPENDIX H2: WATER BALANCE CALCULATIONS – POST-DEVELOPMENT

APPENDIX H3: WATER BALANCE RESULTS – PLOTS OF MONTHLY VARIATION IN RUNOFF RECEIVED BY SELECT WETLANDS

APPENDIX I: GROUNDWATER MOUNDING CALCULATIONS

HYDROGEOLOGICAL STUDY: 384 CRAWLEY ROAD, GUELPH

INDUSTRIAL EQUITIES GUELPH

APRIL 2023

GMBP FILE: 121123

1. INTRODUCTION

Industrial Equities Guelph (the Client) has retained GM BluePlan Engineering Limited (GMBP) to conduct a Hydrogeological Study to support the applications of a Site Plan of Subdivision for a property located at the civic address 384 Crawley Road, Guelph, Ontario (hereafter referred to as the "Site"). The Site is approximately 82 hectares in size and is located near the southern limits of the City of Guelph (see Figure 1).

The proposed Site Plan (see Appendix A) is for Phase 1 of an industrial development, which comprises a warehouse facility for cold storage of food products and ancillary works such as parking areas, stormwater management facilities, an extension of Southgate Drive, and area grading for future phases.

The Site is proposed to be serviced with both municipal water and sanitary which will include an on-Site sewage pumping station; and stormwater will be managed by on-Site facilities (i.e., stormwater management ponds, engineered infiltration galleries etc.).

The following report presents the findings of the hydrogeological study, which gathered data from existing reports and project-specific site investigation to assess the potential for impacts that the proposed development may have on the local hydrogeological system and nearby receptors.

1.1 PURPOSE AND SCOPE

The purpose of this study is to support the development process by providing hydrogeological information and assessments to support other aspects of the site plan application, such as the stormwater management plan and the environmental impact study.

Objectives of this study are as follows:

- Gather relevant hydrogeological, regulatory, and physical information about the Site
- Develop a hydrogeological conceptual model for the Site
- Provide a hydrogeological impact assessment relevant to the proposed land use in the context of the regulatory setting and hydrogeological system.

The following is a brief outline of the scope of work that was undertaken to meet the objectives.

• Desktop study including review of geological, topographic, and physiographic maps; sourcewater protection documentation; and site-specific geotechnical investigations.

- Field investigation, including
 - Inspection of Site to visually assess drainage and surface water features.
 - The drilling and installation of 11 new monitoring wells, including the logging of stratigraphy and well installations by GMBP staff.
 - Manual installations of 8 piezometers, 6 of which were installed as nests in the various wetlands on-Site
 - Installation of dataloggers in 11 new monitoring wells, 5 existing monitoring wells, and 8 new piezometers to monitor long-term fluctuations in groundwater level.
 - Quarterly monitoring visits to attend to the Site to download groundwater level data from the dataloggers.
 - Collection and analysis of groundwater and surface water samples.
 - Complete a door-to-door well survey at nearby residences and complete baseline water quality sampling
- Hydrogeological assessment, including
 - Drafting of hydrogeological cross-sections
 - Preparation of a water balance (based on a catchment plan as developed by AECOM, the civil engineer for this project)
 - Identification of potential water quality or water quantity impacts that the project may have on nearby receptors such as domestic wells and surface water features or ecological features
 - o Potential requirements for construction dewatering
 - Recommendations to minimize potential hydrogeological impacts to identified receptors.

A more detailed description of particular investigative activities is provided in Section 3.1 (Methodology) of this report.

2. BACKGROUND

For the purposes of this report, the term "north" shall be taken to mean the direction parallel with Southgate Drive and Crawley Road toward Clair Road.

The term "wetland corridor" as used in this report refers the zone running roughly north-south through the easterly portion of the Site and which is occupied by wetlands WET-03, WET-05, WET-06, WET-07, WET-12, and their ecological buffer areas.

2.1 SITE LOCATION AND SETTING

The Site is situated near the southern city limits of the City of Guelph and is described by the civic address 384 Crawley Road, Guelph, Ontario. The Site location is further described as Parts of Lot 13, 14 and 15, Concession 7 of the Geographic Township of Puslinch.

At the time of writing, the Site is currently used for agricultural purposes. Land uses to the east and south are agricultural and rural residential. To the immediate west of the Site is the Crawley Road right-of-way and further beyond that is the Ontario Provincial Highway 6. To the north of the Site exists the Southgate Business Park which consists of numerous industrial properties along Southgate Drive. To the immediate northwest of the Site exists a stormwater management pond that manages flows from the uplands along Southgate Drive.

Figure 2 provides an aerial view of the Site and adjacent lands.

2.2 PROPOSED DEVELOPMENT

A copy of the proposed Site Plan for Phase 1 of the development is provided in Appendix A.

Phase 1 is proposed to involve construction and/or pre-grading activities over an area approximately 24.0 ha in size, including the following:

- construction of a warehouse cold storage facility with office building
 - approximate area 22,900 m²;
- parking areas
 - o approximate area 4.9 ha;
- stormwater management infrastructure (i.e., infiltration galleries);
- roadway extension of Southgate Drive with associated stormwater infiltration gallery

 approximate area 2.1 ha; and
- pre-grading of other areas in preparation for the construction of future phases

 approximate area 14.8 ha.

The development will involve the removal of an existing tree plantation which currently lies within the area to be developed: compensation woodland plantings will be undertaken in an area of approximately 5.49 ha in the easterly portion of the Site.

The Site is proposed to be serviced with municipal water and sewer, an on-site sewage pumping station, stormwater management facilities and engineered infiltration galleries.

2.3 GEOLOGY AND PHYSIOGRAPHY

The Site is situated within the physiographic region known as the Horseshoe Moraines (Chapman and Putnam, 1984). The Horseshoe Moraines (see Figure 3a) are described as series of broad, horseshoe-shaped glacial moraines which flank the uplands that lie to west of the Niagara Escarpment. The northmost moraine within the Horseshoe Moraine complex (in which the Site is situated in) is the Paris Moraine, which is described as steeply sloped to very hilly, hummocky landscapes with numerous kettle depressions that may vary in size (e.g. 10s of meters to 100s of meters).

In terms of physiographic landforms, mapping from the Ontario Geological Survey (Chapman and Putnam) indicates that the Site is situated within a Till Moraine (see Figure 3b). The available surficial geological mapping (Ontario Geological Survey, 2010) further corroborates this by illustrating that the Wentworth till is the predominant surficial soil type across the Site, with some ice-contact gravel near the center of the Site that extends to the south and west, and a peat and muck layer at the southeast corner of the Site that extends southeast (see Figure 4). The Wentworth till can be described as a thin layer of stony, sand to silty sand till (Karrow, 1968) that can be found near the surface of the Paris Moraine functioning as a cap for the underlying sand and gravel. Notably, it is reported that the Wentworth till atop the Paris Moraine typically has lower silt content, making it harder to distinguish from the underlying sand and gravel.

A review of nearby water well records corroborate the predominance of a surficial layer of till described as clay, gravel and stones generally extending approximately 12 to 13 m below ground

surface (mbgs). Underlying the till, interbedded layers of sand and gravel (ranging from fine sand to gravel and boulders) was encountered generally extending to depths of 18 mbgs to 25 mbgs. Below this sand and gravel deposit, the well records are inferred to indicate older till materials (e.g. "gravel sand clay", "clay gravel", "gray clay and boulders") extending to the subcrop of bedrock at around 27 to 42 mbgs

Bedrock in the vicinity of the Site is Silurian dolomite rock of the Guelph/Amabel Formation. This formation is characterized by limestone and dolostone.

2.4 LOCAL RELIEF AND DRAINAGE

Topographically, the Site can be described as hummocky with numerous rolling hills and low-lying closed depressions areas. The topography ranges from elevations of about 345 masl to lows of about 330 to 331 masl within the various kettle depressions.

Due to the lack of watercourses at the Site, it is not readily evident whether the Site lies within the Hanlon Creek, Mill Creek, or Irish Creek watersheds in terms of surface water flows. According to catchment mapping available from the Grand River Conservation Authority (GRCA Web-Map), the Site is located at a watershed divide, where the eastern part of the Site is located within the Hanlon Creek sub-watershed and the western portion is predominately in the Mill Creek sub-watershed. A small portion at the northwest of the property is also designated as the Irish Creek sub-watershed. However, the Clair Maltby Secondary Plan indicates that the Site is within the Mill Creek sub-watershed (Wood Canada Limited, 2018).

Surface water drainage on-Site is primarily internal: runoff collects within the numerous "closed" kettle depressions on-Site. Runoff that accumulates at the kettle depressions is controlled by either evapotranspiration or infiltration into the ground, with the latter process ultimately providing recharge to the regional groundwater table.

Though several of the kettle depressions do not retain standing water (i.e., collected runoff dissipates rapidly via evapotranspiration and/or infiltration), some of them do and wetland communities have developed within them. A set of 13 wetland areas have been identified on-Site (named WET-01 through WET-13, see Figure 5 for wetland locations). For those kettle depressions that have developed wetland communities, the water levels fluctuate seasonally and most of these have been observed to go dry for at least part of the year. The larger, deeper depressions located at the northeast quadrant of the Site do maintain water for longer periods but are also known to go dry during times of drought (Anderson, 2010).

The wetlands WET-01 through WET-09 and WET-11 through WET-13 at the Site have been classified as Provincially Significant Wetlands (PSWs) by the Ministry of Natural Resources and Forestry (MNRF). This has significant implications to the project as Section 2.1 of the Provincial Policy Statement (2005), prohibits any development or site alterations from occurring within said PSWs.

2.5 LOCAL USE OF GROUNDWATER

Due to the location of the Site adjacent to the Guelph city limits, there may be some residences or properties in the nearby rural areas that rely on water wells for water supply.

A search of the provincial water well records database was conducted to identify water wells within 500 m of the Site and determine their uses (as per the information available on the record). Figure 6 provides a map showing the water well records attributed to the locations within the search area. Table 1 (see end matter) provides a listing of some of the characteristics of each of the well records. The following is a summary of the findings of that search:

- 54 well records in total, of which the reported uses were:
 - Domestic: 16 records (two attributed to the Site)
 - Commercial: 1 record (attributed to the Site; however, it is mis-plotted and should be located at the address 519 Maltby Road according to record)
 - Industrial: 1 record
 - o Livestock: 3 records
 - Municipal: 1 record (well record was for a test hole and not used for water supply)
 - Monitoring: 22 records (three attributed to the Site)
 - Abandoned: 3 records (one belongs to the Site)
 - Not Used: 5 records
 - Not Listed / Unknown: 2 records
- Of the reported off-Site wells for supply uses, six were reported to be overburden wells, and the remainder were bedrock wells.
- Bedrock was generally encountered at 30 to 40 mbgs

Among the water well records, some appear to be attributed to locations on-Site based on MECP mapping. These well records are provided in Appendix B and summary information is provided here as follows:

- Well ID 6702499: 20.4 m deep (overburden), with static water level of 15.3 mbgs. Reported use is domestic.
- Well ID 6703865: 50.3 m deep (bedrock), static water level of 21.4 mbgs. Reported use is domestic.
- Well ID 6708738: 22.9 m deep (overburden), static water level 15.6 mbgs. Reported use is commercial.
 - Upon closer inspection of the well record, it appears that the MECP mapping is in error and that this well is located at 519 Maltby Road rather than on-Site.

2.6 SOURCEWATER PROTECTION

According to the Source Protection Information Atlas (MECP, 2021), the Site overlaps the following types of vulnerable areas:

- Wellhead Protection Area: Yes
 - WHPA-D with a vulnerability score of 2
- Groundwater Under Direct Influence (GUDI): No
- Issus Contributing Area: No
- Significant Groundwater Recharge Area: Yes
- Highly Vulnerable Aquifer: No
- Intake Protection Zone: Yes,
 - IPZ-3 with a vulnerability score of 1

- Located along the wetland corridor and along south of Site
- Event Based Area: No

These designations under the Sourcewater Protection Plans will be used to assess the proposed development for significant threats to drinking water and to determine, if required, suitable monitoring and/or mitigation activities for the protection of drinking water resources

2.7 RELEVANT LOCAL AND SITE-SPECIFIC REPORTS

2.7.1 2006 GEOTECHNICAL INVESTIGATION BY PETO MACCALLUM LTD.

A geotechnical investigation was previously conducted on the Site by Peto MacCallum Ltd. (PML) in 2006. The geotechnical investigation was conducted to support a previous Draft Plan of Subdivision application for the development of an industrial subdivision (similar to what is being proposed currently).

The field investigation involved the drilling of fifteen (15) boreholes, ten of which were installed with standpipes to monitor groundwater levels, as well as the excavation of 41 test pits. The boreholes were advanced to depths between 3.65 and 9.60 mbgs; and the test pits were excavated to depths between 1.50 and 4.30 mbgs. The investigative locations were selected to explore the roadway extension of Southgate Drive right-of-way, potential storm water management ponds in low-lying areas, and the slope alongside the south edge of Site. Select soil samples were also collected for grain size analyses to investigate the suitably of soils for storm water and roof water infiltration systems (i.e., storm water retention ponds and infiltration galleries).

As reported by PML, the soils encountered on-Site did not exhibit a discernible stratigraphic pattern but generally these were the soil types encountered:

- <u>Topsoil</u> described as low organic sandy silt, ranging in thickness of 200mm to 400mm and thicker at the low-lying areas 600mm to 800mm; overlying,
- <u>Silt</u> frequently found in the low-lying areas believed to have been deposited as washed-in sediment. The silt was also observed at several isolated locations in the table land areas. The texture ranged from sandy to clayey silt and extended to depths of 0.6 to greater than 2.6 mbgs; overlying,
- <u>Sand</u> varying in texture from silty fine sand to coarse gravelly sand. The sand was prevalent across the site but was more predominant in the north half and east and west ends of the Site.
- <u>Sand and Gravel</u>, grading from gravelly sand to sandy gravel with cobbles and boulders. Encountered primarily through the central and southern half of the Site, as well as the northwest quadrant, and other random occurrences at several isolated test pit locations.
- <u>Sand and Silt Till</u> was encountered at the southeast quadrant of the Site.

The geotechnical investigation concluded that the Site is generally well-suited for stormwater management systems relying on infiltration but noted that the fine-textured soils (e.g. silty clay) may not be suitable for infiltration galleries: alternative locations should be considered, or the soil should be excavated and replaced with sand and gravel from cut areas during grading.

2.7.2 2010 HYDROGEOLOGICAL ASSESSMENT REPORT BY ANDERSON GEOLOGIC LIMITED

It is noted that Anderson Geologic referred to the wetland areas on-Site by a letter-name (e.g. Wetland "B") convention. For consistency with the rest of this report, the following summary of the Anderson Geologic report will refer to the wetland areas using the numbered wetland names (WET-01 through WET-13) which have been developed for the purpose of the present study.

A hydrogeological assessment was previously conducted by Anderson Geologic Limited (Anderson) in 2010, to satisfy the following specific conditions of a draft plan approval received for the Site in 2007:

- To provide a confirmatory assessment of the shallow hydrogeological setting using new data collected in 2009 and 2010, with particular emphasis on confirming the interrelationship between the shallow groundwater regime and the surface water regime (i.e., wetlands and area water courses).
- To provide detailed water-balance and groundwater recharge evaluation to support an effective strategy for post-development stormwater management, one that maintains groundwater contributions to important groundwater and surface water receptors.

Excerpts of select information from Anderson (2010) are provided in Appendix C, including borehole logs, hydrographs, catchment plans, cross-sections, and interpreted groundwater contour plans.

In order to satisfy these conditions, Banks Groundwater Engineering Limited completed the drilling of three additional boreholes (MW1-09 to MW3-09) adjacent to three of the wetland features on-Site (i.e., WET-02, -03 and -07). The boreholes were advanced to depths of 8 to 10 mbgs and each were equipped with a monitoring well. The field program also included the installation of 10 nests of shallow drive-point piezometers at various wetland features (i.e., WET-01 - WET-04, WET-06, WET-07, and WET-10).

The groundwater and surface water levels were then monitored during the period of June 2009 to April 2010 at six (6) monitoring wells (3 new and 3 from the prior 1997 Gartner Lee Limited (GLL) investigation), and the 10 nested piezometers, using dataloggers and manual measurements. This monitoring data in addition to historical monitoring data from the GLL monitoring wells, the Golder Associates monitoring well MW06-07, and the Puslinch Township Well MW5 was used to generate groundwater level contours for the Site during high and low seasonal water levels.

The groundwater levels reported by Anderson GeoLogic (2010) seldom rose to levels shallower than 4 m below ground surface, except in the immediate vicinity of the wetland corridor. The deepest groundwater levels were observed on the western half of the property (i.e., between the woodlot area and Crawley Road). The groundwater contours interpreted by Anderson GeoLogic indicated that the groundwater flow direction across the Site was towards the west-southwest in both low and high-water table conditions. The data also provided insight on the relationship between the regional groundwater table and surface water within the wetlands. The following inferences were made:

- Wetlands WET-06, WET-07 and WET-12
 - Behave as "flow-through" wetlands: based on local groundwater levels and interpreted seepage directions, these wetlands appear to receive seasonal

groundwater discharge from the upgradient lands to the east during high-water table conditions, while simultaneously recharge occurs on the downgradient (i.e., west) side.

- During low water-table seasonal periods, these wetlands function as depressionfocused recharge features (i.e., are disconnected from the groundwater table).
- Surface runoff and direct precipitation are still strong contributors to sustaining surface water levels in these wetlands.
- Wetlands WET-01, WET-02, WET-03, WET-04, WET-05, WET-08, WET-09
 - These wetlands are perennially disconnected from the groundwater table and are sustained strictly by surface runoff and direct precipitation
 - Mounding of the regional groundwater table may occur in the vicinity of Wetlands WET-03, WET-04, WET-05, WET-08, and WET-09 due to the recharge that occurs at those locations.

Anderson GeoLogic (2010) also reported the results of a detailed pre-development and postdevelopment feature-based water balance assessment. The assessment provided target quantities of run-off and/or recharge that should be directed to each individual wetland whose catchment areas intersected the proposed development blocks (i.e., post-development).

2.7.3 CLAIR-MALTBY SECONDARY PLAN

The City of Guelph commissioned the preparation of the Clair-Maltby Secondary Plan (CMSP) and approved the resulting report in May 2022. The CMSP included a variety of technical studies in a Comprehensive Environmental Impact Study Report (Wood Canada Limited, 2018), including a hydrological study (by Wood.) and a hydrogeological study (by Matrix Solutions Inc.).

Monitoring data and interpreted groundwater level contours included in the CMSP report indicate that Hall's Pond (located about 1.6 km east of the Site) and other ponded areas east of Gordon Street are dominant sources of recharge: groundwater level observations indicate substantial groundwater mounding in those areas (see "Water Table Map Observed Data" and "Conceptual Groundwater Flow System" plots in Appendix D).

These significant recharge features (e.g. Hall's Pond) appear to dominate the groundwater flow patterns across much of the City's area south of Clair Road: groundwater flow is generally in a radial direction away from this cluster of recharge features.

According to the interpreted groundwater level contours provided in the CMSP, the lateral direction of groundwater flow at the Site is expected to generally be toward the west or southwest.

The CMSP study also included extensive hydrogeological and hydrological modeling, including the determination of groundwater levels and annual recharge rates by simulation.

The output of this model indicates that groundwater levels across most of the western portion of the Site are expected to be deeper than 7 m below ground surface. Near the wetland corridor (i.e., the zone running roughly north-south through the easterly portion of the Site and which is occupied by wetlands WET-03, WET-05, WET-06, WET-07, WET-12) the simulation predicts depth to groundwater ranging from 0 m (i.e., water table coincides with ground surface) to 5 mbgs. See Appendix D for a copy of the simulation results ("Simulated Average Depth to Water Table").

The model also indicated that for much of the Site, the annual recharge rate is in the range of 250 to 350 mm/year. Along Crawley and Maltby, the recharge rate is toward the upper end of that range, whereas in the interior of the Site and on the east side of the wetland corridor it is toward the lower end of the range. In the western portion of the Site, some areas lying near the bottoms of closed depressions are noted to achieve higher annual recharge rates, up to 400 mm/year. See Appendix D for a copy of the results of the groundwater recharge model ("Simulated Groundwater Recharge").

2.7.4 INFILTRATION TESTING (AECOM)

The present hydrogeological study is being undertaken concurrently with a stormwater management (SWM) design by civil engineering consultant AECOM.

As part of the SWM design work, AECOM undertook a series of test pits and infiltration tests at select locations on-Site. The details of these tests are provided under separate cover by AECOM (2023, *Phase 1 Stormwater Management Plan Report, Parts of Lots 13, 14 and 15, Concession 7, Guelph Ontario*).

A total of five tests were conducted using a Guelph Permeameter in the surficial soils of the Site mainly in areas where infiltration galleries and stormwater management facilities are anticipated to be constructed as part of the proposed development.

Three tests were completed in soils described as loose fine sand with trace gravel and silt. These test results indicated hydraulic conductivity in the range of 4.7×10^{-6} to 7.6×10^{-6} m/s.

One test (IFT1-4) was completed in the vicinity of WET-02 at an elevation of approximately 332.7 masl. The soil at this location was described as being loose fine-to-coarse sand with trace gravel and silt. This test indicated a hydraulic conductivity of $5.4x10^{-6}$ m/s.

The fifth test was conducted in soils described as loose fine-to-medium sand with trace silt and indicated a hydraulic conductivity of 1.7×10^{-5} m/s.

The soils tested were of very similar descriptions, varying mainly by the presence of trace gravel and the gradation of the sand. Across the five tests, the range in hydraulic conductivity varied within less than one order of magnitude, indicating very consistent soil conditions among the locations tested.

2.7.5 ENVIRONMENTAL IMPACT STUDY (NRSI)

In support of the site plan application for the proposed development, Natural Resource Solutions Inc. (NRSI) is concurrently preparing an Environmental Impact Study Report (EIS) to assess the feasibility of the proposed development in relation to the natural features located on-Site.

NSRI identified 13 wetlands features on-Site (i.e., WET-01 to WET-13). Figure 5 shows the locations of these wetlands.

Each of these wetland areas was assigned an ecological land classification (ELC): these are summarized in Table 2 .

Generally, the Ecological Land Classifications indicate that most of the wetland areas experience seasonal flooding in spring, with flooding subsiding and soils drying through the summer.

Exceptions are the portions of WET-06 and WET-07 which are classified as "Organic Shallow Marsh"-type ecosites (MAS3-10 and MAS3-2): these areas are typically characterized (Lee, et al., 1998) as having shallow pools (<2 m deep) of standing water for most or all of the growing season.

2.7.6 WETLAND REMOVAL POLICY ASSESSMENT (NRSI)

NRSI also completed an assessment of wetland WET-10 with respect to section 8.4.4 of GRCA policy (Natural Resource Solutions Inc., 2023). This assessment was conducted to review the ecological and hydrogeological significance of WET-10 and whether or not it may be considered eligible for removal or encroachment by the proposed development.

The conclusion of that assessment was that "WET-10 adequately meets the criteria within Section 8.4.4 of GRCA policy to permit removal of the wetland" (Natural Resource Solutions Inc., 2023).

Correspondence received from the GRCA (Grand River Conservation Authority, 2023) indicates that the GRCA has accepted this conclusion.

Though the GRCA has recognized WET-10 as being eligible for removal, throughout this report (i.e., the hydrogeological study), the term "WET-10" will continue to be used to refer to that area of the Site, such as with respect to catchment identification in the water balance (see Section 5).

3. FIELD INVESTIGATION

In order to collect site specific information about the hydrogeological conditions on-Site, a field investigation was conducted as part of this hydrogeological study. This information was collected with the intention of providing additional detail to the existing geological and hydrogeological information available for the purposes of refining the conceptual model of the Site hydrogeology and facilitating the impact assessment process.

3.1 METHODOLOGY

The hydrogeological study involved the completion of multiple activities, including the following:

- Installation of up to 11 new monitoring wells, including logging of stratigraphy and well installation details by GMBP staff.
- Grain size analyses on select samples of soil.
- Manual installation of eight piezometers (six of which were nests of two piezometers) in the wetland areas within the Site (specifically, wetlands WET-01 WET-09).
- Installation of electronic dataloggers in 11 new monitoring wells, 5 existing monitoring wells, and 8 new piezometers (6 of which are nested) to monitor long-term fluctuations in groundwater level.
- Monitoring visits to attend the site to download groundwater level data from the dataloggers
- Water quality sampling for general water quality parameters at up to 22 groundwater monitoring locations and 8 surface water monitoring locations.
- One event of follow-up environmental water sampling at the same locations

• Door-to-door water well survey, including an attempt to collect baseline water quality samples from up to 5 residences.

Figures 7a and 7b provide the general layout of the site investigation instruments.

Table 3 provides a summary of the tasks completed by GMBP as part of the field investigation program.

3.1.1 MONITORING WELL INSTALLATION

Boreholes were advanced by a licensed well drilling contractor under the supervision of GMBP staff.

Each borehole was advanced using a hollow stem auger to intersect the apparent groundwater table. Borehole depths ranged from 6.1 m to 15.3mbgs.

During drilling, soil samples were collected using split spoon sampler and were visually assessed to describe the stratigraphy of the soils underlying the Site.

Monitoring wells were installed in all 11 boreholes. At two locations the monitoring wells were installed as a nest, with a deep and shallow well). Each well was constructed with casing of 2" PVC pipe with slotted screens. The annulus around the screen was backfilled with sand pack and bentonite chips were placed in the annulus above the filter pack to seal the well and protect it from surface water intrusion. Each well was provided with a J-plug well cap and a protective steel stickup casing which was secured with a padlock.

A datalogger (Solinst Levelogger) was installed in each monitoring well for the ongoing collection of water level data.

Stratigraphic records and details of monitoring well construction are provided in the borehole logs in Appendix E1.

Select soil samples were submitted for grain size analyses and the results of the testing is also provided in Appendix E2.

3.1.2 PIEZOMETER INSTALLATION

Piezometers were installed manually. Using a hand auger (i.e., "Dutch auger"), GMBP staff advanced a borehole to the target depth. Soils withdrawn by the auger were visually-assessed to describe the stratigraphy of the soils.

Upon completion of the borehole, piezometer construction began by placing a casing assembly into the borehole. The casing assembly was constructed of 1-1/4" PVC pipe and fittings and consisted of an end-cap, a short section (approximately 20 cm) of machine-slotted PVC screen, a coupling adapter, a section of 1-1/4" PVC riser pipe (up to 1.5 m in length), and capped with a J-plug.

The casing assembly was backfilled with clean filter sand to form a filter pack to protect the screen. Bentonite chips were emplaced to form an annular seal from the top of the filter pack to the surface.

The elevations of each piezometer (top of casing, top of ground) were determined using a level loop (i.e., rod and automatic level) to be able to determine water levels as elevations and to compare water levels between piezometers in a nest for the determination of vertical gradients.

A datalogger (Solinst Levelogger) was installed in each piezometer for the ongoing collection of water level data.

3.1.3 GROUNDWATER SAMPLING – MONITORING WELLS

Groundwater samples were collected according to industry-accepted practices and GMBP's internal standard procedures manual. The procedure began by measuring the water level in the well and determining the volume of the water column in the well. A dedicated Waterra inertial pump (i.e., tube with foot valve) was used to purge the well of at least three well-volumes or until dry. After purging, inertial pump was used to draw groundwater from the well and collect it into laboratory-supplied containers/bottles appropriate for the proposed analyses.

Samples collected for metals analyses were filtered using a new Waterra-brand 0.45 µm filter.

Samples were kept cool (between 0 and 10°C) and submitted under chain of custody protocols to a CALA-SCC accredited environmental laboratory (Bureau Veritas, Mississauga) for analyses.

3.1.4 GROUNDWATER SAMPLING – DOMESTIC WELLS

Domestic water samples (i.e., from nearby residences identified in the door-to-door well survey) were collected by GMBP staff from a pre-treatment tap or faucet identified by the homeowner.

The procedure began with the sterilization of the sampling point using a bleach solution or flame. The water was then turned on to run for approximately 3 to 5 minutes. To prevent sample contamination, technicians donned a new pair of nitrile gloves before opening sample bottles to begin collection, with care being taken not to touch the mouth of the bottle or the underside of the cap. Water was collected into the laboratory-supplied bottles. To prevent contamination during collection of samples for microbial analyses, care was taken not to speak or to breathe toward the bottle during sampling.

Samples were kept cool (between 0 and 10°C) and submitted under chain of custody protocols to a CALA-SCC accredited environmental laboratory (Bureau Veritas, Mississauga) for analyses.

3.1.5 SURFACE WATER SAMPLING

Samples from wetland areas were collected by dipping a laboratory-supplied container directly into the water to be sampled. Care was taken during sampling to avoid disturbing sediment and to avoid overfilling which might result in loss of preservative.

Samples were kept cool (between 0 and 10°C) and submitted under chain of custody protocols to a CALA-SCC accredited environmental laboratory (Bureau Veritas, Mississauga) for analyses.

3.2 SITE RECONNAISSANCE

On April 12, 2022, and on August 2, 2022, GMBP visited the Site to conduct a visual inspection of any drainage and surface water features present with the subject Site.

During the reconnaissance, the Site was observed to consist of a hummocky landscape with numerous closed depressions varying in size and orientation. The bulk of the Site is being used for agricultural purposes (i.e., crop land), and the remaining areas consist of a woodlot near the center of the property, a low-lying area referred to as the "wetland corridor" which extends roughly south-

north across the center of the Site from wetland WET-03 to WET-12, and various other low-lying natural areas spread across.

3.2.1 WETLAND FEATURES

GMBP observed the condition of these wetlands on two separate occasions: in mid-spring and late summer. During the reconnaissance, the wetland limit stakes were observed as placed by NSRI in consultation with the Grand River Conservation Authority.

On April 12, 2022, GMBP observed standing water in the following wetlands: WET-01, WET-02, WET-06, WET-07, and WET-12. Of these wetlands, WET-07 and WET-12 contained the largest amount of pooled water. No evidence of groundwater seepage was observed along the banks of the depressions. Wetlands WET-03, and WET-09 were observed to have no standing water but rather a soft, moist surface. All other wetlands on-Site were not observed at this time.

On August 2, 2022, wetlands WET-01 through WET-03, WET-05 through WET-07 and WET-12 were all observed to be dry and most had overgrowth vegetation within them.

3.3 SOIL CONDITIONS

During the drilling event on April 18th through to April 22nd, 2022, GMBP attended the Site to supervise the drilling and log the soil stratigraphy encountered. The borehole logs are provided in Appendix E1 for reference.

From these GMBP boreholes, the stratigraphic sequence generally encountered is described as follows:

- <u>Topsoil</u>
- <u>Silt</u>
 - Only observed at borehole MW22-07 and extends 1.8 mbgs
 - This borehole is located at a topographical low and this stratum is likely the result of sediment accumulation due to erosion following initial deposition of the Paris Moraine.
- Silty Sand to Sandy Silt
 - Observed underlying the topsoil at boreholes MW22-02, MW22-08 and MW22-09 and extends 1.5 to 3.0 mbgs.
 - Also observed at borehole MW22-04 and MW22-06 interbedded between Sand and/or Gravel Layers
 - Upper Silty Sand to Sandy Silt Till
 - Observed at boreholes MW22-09 and MW22-10 overlying the Sand and/or Gravel.
 - This upper till layer was encountered at elevations ranging from 335.8 332.2 masl.
- Sand and/or Gravel
 - Encountered in all boreholes generally underlying the topsoil or Silty Sand / Sandy Silt, typically 8 to 10 m in thickness.
 - Thinner pockets of Sand and Gravel were observed at the eastern half of the Site, ranging in thickness of 1.2 to 3.8 mbgs underlain by Till.
 - At boreholes MW22-01, MW22-05 to MW22-08, and MW22-10 the Sand and/or Gravel was observed to overlie a lower Silty Sand to Sandy Silt Till, and the

interface between the two strata was described as wet in moisture content (with the exception of MW22-06 which is located at a topographical high point).

- A deeper Sand and Gravel layer was observed at MW22-08 underlying the lower Till and extended beyond the depth of borehole (i.e., lower than 327.5 masl) which was not observed at other borehole locations.
- Lower Silty Sand to Sandy Silt Till
 - Observed at boreholes MW22-01, MW22-05 to MW22-08, and MW22-10 underlying the Sand and/or Gravel Layer and extended beyond the depth of boreholes (except at borehole MW22-08 where it extended to 328.3 masl).

3.4 GROUNDWATER LEVELS

3.4.1 MONITORING WELLS

On March 29, 2022 datalogging pressure transducers were installed in five of the previously existing monitoring wells located on-Site in order to record groundwater levels on a frequent basis over an extended period of time (ideally multiple seasons). On May 12, 2022, GMBP again visited the Site to install dataloggers in the newly installed monitoring wells (i.e., MW22-## series).

A topographic survey was also completed on the new and pre-existing monitoring wells to translate the data recorded by the dataloggers into actual elevations.

Figure 7a provides a map of the Site and the locations of the monitoring wells.

Table 4a and 4b provide a summary of groundwater level measurements collected from the monitoring wells (including manual and datalogger measurements). Charts 1 through 16 provide hydrographs of groundwater levels from each of the 11 new monitoring wells and 5 of the pre-existing monitoring wells in which dataloggers were installed.

From the data collected to date, groundwater levels at the Site were generally highest in the late spring (i.e., April and May) and have exhibited a relatively low degree of seasonal fluctuation with water levels in the early winter being only slightly lower (i.e., within 1 to 2 m at most locations).

The shallowest groundwater level on-Site was observed at MW22-10 (333.30 masl) located at the southeast corner of the Site near WET-04. The groundwater table was encountered approximately 1.2 mbgs at this location. Conversely, the deepest groundwater level was observed at MW22-01D (327.47 masl) located at the northwest quadrant of the Site and was 13.1 mbgs.

Generally, the groundwater level in the vicinity of the various wetlands was observed to be lower than the surface water levels in the wetlands, indicating that the surface water accumulating in the wetlands is infiltrating downward and providing recharge to the groundwater table (i.e., "recharge" conditions).

Comparing the groundwater levels between monitoring wells in the same nest provides an indication of vertical groundwater gradients:

- MW22-01S/D (located in the westerly portion of the Site) indicates a difference in which the water level in the shallow well is about 4 m higher than the water level in the deep well (about 332.7 masl versus 328.3 masl, respectively).
 - This is further contrasted with the historical interpretation of "high" groundwater level of about 329.5 masl given by Anderson (2010) for this area.

- It is noted that there is a till layer intervening between the screen of the shallow well and the deeper well of MW22-01S/D, which is likely responsible for the difference in water level between the two wells.
- MW22-04S/D (located a short distance west of WET-06) indicates that the water in the sand and gravel unit intersected by them is hydrostatic (i.e., under minimal vertical gradient).

3.4.2 PIEZOMETERS IN WETLAND FEATURES

In the Spring and early Fall of 2022, eight (8) piezometers (6 of which were nested) were installed at wetlands WET-01 to WET-08. Piezometers were installed as single piezometers where it was noted that there was an operable monitoring well nearby (e.g., see MW3-09 and PZ-06, or MW97-5 and PZ-01) to provide information about vertical gradients. Each of these piezometers has been installed with a datalogger since May 2022 and monitoring is proposed to continue through the development approvals process.

Figure 7b provides a map showing the location of the piezometers across the Site area.

Table 4c provides a summary of groundwater level measurements collected from the new piezometers. Charts 17 through 22 provide hydrographs of groundwater levels from each of the piezometers.

A summary of the readings at each piezometer is given here:

- PZ-01 (located at WET-04):
 - Groundwater levels were recorded at about 0.5 m below ground surface in spring 2022, but then decreased to levels below the piezometer bottom (i.e., "dry" piezometer) through summer and fall 2022.
 - In late November 2022, groundwater levels rose abruptly and have fluctuated between about 0.2 and 0.6 mbgs over the winter.
 - Compared to groundwater levels at nearby MW97-5, a downward gradient is indicated.
 - See Chart 15.
- PZ-02S/D:
 - Initially installed as a single shallow piezometer in spring 2022, with a deeper piezometer being added in fall 2022.
 - Groundwater levels in PZ-02S were recorded as high as about 0.4 mbgs before declining to levels below the piezometer bottom. The piezometer remained dry for the remainder of the period to Feb 2023.
 - Groundwater levels have not been detected in PZ-02D since its installation (September 2022), indicating groundwater levels are below about 331.8 masl at this location.
 - See Chart 16.
- PZ-03S/D
 - Similar to PZ-02, this was installed as a single shallow piezometer in spring 2022, with a deeper piezometer being added in fall 2022.
 - Groundwater levels were about 0.2 mbgs around the time of first installation and decreased to below the piezometer bottom.
 - Subsequent installation of deep piezometer indicated dry conditions until early January 2023 at which time groundwater levels began to increase, rising to about 332.3 masl, about 1.8 mbgs.

- See Chart 17.
- PZ-04S/D (in/near WET-01)
 - These piezometers have been dry since the beginning of monitoring (April 2022 for PZ-04S and September 2022 for PZ-04D), indicating groundwater levels deeper than 333.0 masl, approximately 1.5 mbgs at the WET-01 area.
 - See Chart 18.
- PZ-05S/D (north side of WET-06)
 - Groundwater levels at these piezometers were nearly identical in spring 2022, indicating hydrostatic conditions (i.e., no apparent vertical gradient).
 - Beginning about 0.3 mbgs, groundwater levels steadily declined through summer to elevations below the bottom of PZ-05D (i.e., less than 330.3 masl) and have remained dry since then.
 - See Chart 19.
- PZ-06 (near the southwesterly edge of WET-07)
 - In spring 2022 groundwater levels were about 0.5 mbgs, and declined through summer 2022 to about 1 mbgs. Through the fall and winter, groundwater levels have oscillated between just above and just below the bottom of the piezometer (about 329.3 masl).
 - The hydrograph appears more erratic due to suction effects on the levelogger during periods of drying which give the impression of a "measured" groundwater level below the bottom of the piezometer.
 - See Chart 20.
- PZ-07S/D (near the south end of WET-05)
 - These piezometers have been dry since installation in September 2022 (i.e., groundwater levels below 332.1 masl).
 - See Chart 21.
- PZ-08S/D (at WET-08)
 - PZ-08S has been dry since installation (September 2022)
 - PZ-08D was mostly dry since installation (September 2022) with a brief spike in water level in mid-October that quickly subsided, followed by more pronounced increasedecrease cycles beginning in January 2023. The highest level recorded was about 1.3 mbgs.
 - See Chart 22.

Generally, the piezometer data supports the finding that there is some vertical separation between the surface water or ground surface level in the wetlands and the groundwater level, indicating that downward gradients (or "recharge" conditions) have prevailed during this monitoring period. PZ-05S/D (at WET-06) appears to be an exception, in which the groundwater levels in the two piezometers were nearly identical, indicating hydrostatic conditions in that area, potentially due to a deeper aquitard limiting downward seepage and forcing groundwater to flow laterally through the area: compare to MW-04S/D (Chart 3), at which the groundwater levels were identical to each other but slightly lower than at PZ-05S/D, potentially indicating a lateral gradient and westerly flow through this area near WET-06.

3.5 GROUNDWATER QUALITY

Groundwater samples were collected from 14 out of the 16 monitoring wells on-Site (MW22-05 and MW22-06 were dry on the date of sampling) and the samples were submitted for routine groundwater

quality analyses ("RCAP"). The results of the quality analyses of the groundwater samples are provided in Table 5a and 5b. The Certificate of Analysis associated with the groundwater quality analyses is also included in Appendix F1.

It is noted that the proposed development will be serviced by municipal water supply. As such, the results from the laboratory analyses have been compared against the *Provincial Water Quality Objectives* (PWQO) criteria (rather than the *Ontario Drinking Water Quality Standards*) because it is more relevant to review in the context of its potential influence on surface water (e.g., such as during construction dewatering and discharge).

Generally, the reported results indicate that the shallow groundwater on-Site is considered to be moderately mineralized as indicated by the elevated concentrations of dissolved calcium and magnesium. This result can be expected due to the Site's geological environment: the local overburden, which is largely derived from regional bedrock materials such as the limestone and dolostone of the Guelph / Amabel Formations.

A single well (i.e., MW3-09) exceeded the PWQO for the metals parameters cobalt and iron. It is inferred that these two metals parameters are naturally occurring and not as a result of anthropogenic activity; and furthermore, appear to be localized to the area in the immediate vicinity of MW3-09 because iron and cobalt were below the laboratory detection limit at all other sampled monitoring wells. As MW3-09 is located within the buffer of WET-07, there is no development proposed to occur at this location. As such, these reported exceedances do not have any implications for groundwater discharge during any potential construction dewatering that may occur during the proposed development.

Ultimately, the results of the analyses indicate that the groundwater on-Site meets the PWQO (with the exception of MW3-09) and would be suitable to be discharged to land in the scenario where construction dewatering is required. Appropriate measures to capture suspended solids from the dewatering discharge should be implemented during construction.

3.6 SURFACE WATER QUALITY – WETLAND FEATURES

Through summer and fall 2022, GM BluePlan made multiple attempts to collect surface water quality samples from the identified wetland features on-Site which were observed to be dry. During the most recent sampling attempt on January 6, 2023, GM BluePlan staff observed surface water in wetlands WET-02 and WET-06 sufficient enough to collect samples.

The samples were collected into laboratory supplied bottles and were submitted to an accredited laboratory for analyses of general water chemistry parameters. Please refer to Appendix F2 for a copy of the Certificate of Analysis as well as Table 6a and 6b for a tabulated summary in which the results of analyses are compared to the Provincial Water Quality Objectives (PWQO) for information purposes.

The samples indicate substantially lower magnesium and calcium concentrations compared to the groundwater quality results, indicating the dominant effect of precipitation on the chemistry of the surface water.

3.7 DOOR-TO-DOOR WATER WELL SURVEY

As part of the scope for this Hydrogeological Study, an invitation letter to participate in a well survey and a groundwater monitoring program hand-delivered to nearby residents. This is of increased importance as nearby water well users may be receptors for any potential environmental impacts that may be contributed by the proposed private sewage systems on-site.

The invitation to participate was hand-delivered to the following 20 properties:

- Crawley Road: 372, 384
- Maltby Road: 72, 80, 88, 99, **104**, **110**, 159, 168, 177, 201, 224, 264, 424, **519** and **192**
- Concession Road 4: 7047
- Sideroad 20: 4646
- Southgate Drive: 995

Five responses were received (indicated by **Bold** text) by residents who wish to participate.

On December 1 and 5, 2022, GM BluePlan staff visited the five residences that responded to the survey to confirm well locations, interview residents, and collect baseline water quality samples to compare to future post-development water quality. It is noted that one respondent owns two properties within the study area (i.e., 519 Maltby Road and 4646 Sideroad 20 N) and thus six properties in total were investigated.

Tables 7a-7f provide a summary of the water quality results compared to the criteria and Appendix F3 provides the laboratory Certificates of Analysis.

The water quality results have been compared to the Ontario Drinking Water Quality Standards (ODWS) and the chemical and physical objectives set forth by the Ontario Regulation 169/03 and the Safe Drinking Water Act (Ministry of Conservation and Parks (MECP), 2002). The ODWS has two sets of criteria: the maximum acceptable concentrations (MAC), and the aesthetic objectives (A/O). The MAC was established for parameters who have known or suspected health effects above a certain concentration. The aesthetic objective was set forth for parameters which may impair the taste, odour, or colour of the water but have no established health effects.

Generally, the water quality at each participant in the monitoring program has been below the MAC for all indicator parameters (i.e., parameters listed above), with the exception of one residence, 192 Maltby Road, at which an exceedance of total coliforms was identified in the sample.

Upon receipt of these results, GM BluePlan contacted the resident (via telephone call) to inform them of the exceedance and to advise that they contact their local public health office immediately for further guidance pertaining to the results. As no construction has begun regarding the proposed development, this exceedance is interpreted to be due to existing conditions at this specific well.

4. HYDROGEOLOGICAL CONCEPTUAL MODEL

A "conceptual model" of a site describes its physical characteristics and provides an interpreted overview of its hydrogeological behaviour. It provides a basis for general understanding of groundwater flows and other hydrogeological phenomena as well as a basis for the assessment of potential impacts. It is noted that additional groundwater level data continues to be collected for the Site.

This conceptual model is subject to change until a data of groundwater level data spanning at least 12 consecutive months has been collected. However, given the data collected thus far as part of the current monitoring program plus the available historical data from prior study by others (e.g., Anderson GeoLogic) we do not expect that the results of additional monitoring will affect the conceptual model of the Site or the results of the assessments made in subsequent sections.

The topography of the Site is hummocky and features numerous closed depressions. As a result, little runoff leaves the Site: the vast majority of it collects in depressions and subsequently infiltrates or is subject to evapotranspiration. In some of these internally-drained catchments on-Site, the amount of runoff is large enough relative to the rate of infiltration that a pool of standing water is allowed to form, thus leading to the development of several wetlands across the Site.

In terms of hydrological function, the hummocky topography leads to retention of precipitation on the Site. The local water budget accordingly consists of evapotranspiration, infiltration and storage, with negligible net outflow by runoff.

The hydrostratigraphy of the Site is complex, featuring a thick overburden with coarse deposits of sand/sand-and-gravel as well as laterally-discontinuous deposits of sand-silt till and other fine-textured deposits. A set of cross-sections have been plotted in Figures 8a-8e showing the available stratigraphic data (i.e., from investigative drilling and historical test pits and boreholes).

The water table on-Site lies at elevations around 331 masl along the wetland corridor and 326 masl near the southwest corner of the Site. The magnitude of fluctuation from periods of high groundwater to periods of low groundwater is approximately 1 to 2 m, with lesser fluctuation being observed near the wetland corridor.

Field observations indicate that the groundwater levels are highest in the vicinity of WET-04/-11 (southeastern portion of the Site) and lowest near Crawley Road in the southwestern portion of the Site. Based on groundwater levels recorded on June 1, 2022, an interpreted groundwater level contour plan has been developed (see Figure 9).

The gradients in the contour plan indicate that the lateral direction of groundwater flow in the western part of the Site is northwesterly while in the eastern part of the Site it is more northerly. The wetland corridor appears to form a minor groundwater divide in that groundwater levels are slightly higher there than points immediately to the east or west: this indicates that the wetlands (e.g. WET-03/-05) are recharge areas causing some mounding of the groundwater table to occur beneath them.

The consistency of groundwater levels (or "smoothness" of the groundwater surface) across Site indicates that the overburden sand/sand-and-gravel aquifer is laterally continuous across the Site and that the till/silt aquitards do not significantly impede or redirect groundwater flow.

However, there are some areas where these fine-textured aquitards do influence the local distribution of groundwater levels, such as at well nest MW22-01S/D, where the groundwater level is approximately 4 m higher in the shallow monitor than in the deep monitor: this occurrence of groundwater mounding appears to be due to the presence of an intervening till aquitard at depth. Due to the consistency of groundwater levels at MW22-01S, the soils above the till appear to be well-drained: the topography of the till surface may be causing retention of water in the overlying sand and gravel (i.e., "perched" groundwater). At MW22-10, the situation is similar, with groundwater levels

being elevated due to the prevalence of fine-textured soils at that location and due to proximity to WET-04/-11, which is a local point of recharge.

Groundwater level observations also indicate that the Site typically exhibits "recharge" conditions. That is, the vertical component of groundwater flow is generally downward, allowing the infiltration of precipitation into the subsurface to "recharge" the groundwater table. This condition even persists at most of the wetland areas on-Site as they exhibit surface water levels that are elevated above and separated from the local groundwater table throughout the year: for these "perched" wetland areas, the main supply of water is via precipitation incident on the wetland area itself and runoff from its immediate catchment area.

A few wetland areas (i.e., WET-13 and WET-06/-07/-12) are understood to intersect the groundwater table for at least a part of the year, during which times they may receive some amount of groundwater discharge. Due to the general distribution of groundwater levels and pattern of groundwater flows, discharge conditions are most likely to occur on the east side (i.e., the upgradient side) of the wetland corridor. This means that the catchment areas that control discharge to the wetland areas are those areas that lie to the east of the wetland corridor: this is an important item to consider, because the development area of the Site lies west of the wetland corridor and therefore is not expected to interrupt the existing sources of groundwater discharge to the wetlands.

Due to the physical constraints of the terrain there is no overland flow outlet for runoff from the Site: the stormwater management plan of the Site will therefore rely heavily on the infiltration of stormwater. As such, the proposed stormwater management design must consider the potential for groundwater mounding and whether or not the water balance of the wetlands will be affected.

5. WATER BALANCE

A monthly water balance has been completed for the purpose of evaluating the quantities of recharge and runoff for the pre-development condition and for the post-development condition.

This monthly water balance was calculated using the Thornthwaite and Mather method (Thornthwaite & Mather, 1957) and was calculated as a "feature-based" analysis to identify the effects of development on each of the identified wetlands on-Site.

The calculations were completed using the catchment areas provided by AECOM, the civil engineer for the proposed development. Plots of these catchment areas are provided in Appendix G.

The water balance calculation sheets for the pre-development case are provided in Appendix H1 and for the post-development case in Appendix H2.

Summaries of the water balance calculations are provided in tables (see end matter) as follows:

- Table 8a: Overall Summary of Water Balance by Wetland
- Table 8b: Summary of Runoff Quantities Pre-, Post- and Change
- Table 8c: Summary of Recharge Quantities Pre-, Post- and Change.

Due to the complexities of calculating actual recharge and runoff for the wetland area itself (i.e., due to standing water affecting the rate of evapotranspiration and infiltration, and due to variable size of open water area) the wetland catchments include only the area outside of the wetland limits described and surveyed by NRSI. This is considered to be a reasonable approach because the main concern for

the analysis is to determine changes in water balance and since development will not be occurring within the wetland limits themselves, it will suffice to quantify the changes that occur in the remainder of the catchment.

Overall, recharge is estimated to increase by approximately 16% and runoff will decrease by approximately 6%.

In the pre-development condition, annual runoff depths in the wetland catchments range from about 116 mm/yr (catchment belonging to WET-06/-07/-12) to 218 mm/yr (WET-09). Recharge quantities range from 155 mm/yr (WET-13) to 272 mm/yr (WET-06/-07/-12). These variations are due mainly to the difference in soil types, topography, and vegetative cover between the different catchment areas. For example, much of the WET-06/-07/-12 catchment area consists of sand/sand-and-gravel soils, which encourage recharge. Evapotranspiration is relatively consistent among the wetland catchments, ranging from about 544 mm/yr to 576 mm/yr.

The water balance calculations (see Table 8a through 8c) also considered "Other Areas" on Site, which are those areas that do not drain to a wetland area and are considered to be internally-drained. As described in the hydrogeological conceptual model (Section 4), the areas to the east of the wetland corridor are interpreted to be potential sources of groundwater discharge to the wetland areas WET-06/-07/-12 due to their location upgradient of those wetland areas. Therefore, the water balance summary distinguishes the areas as follows:

- Other Areas West of the Wetland Corridor, consisting of catchments
 - Pre-Development: 112
 - Post-Development:
 - 202, 203, and 204 (Phase 1 developed areas)
 - 201, 205, 206 (including areas that will be affected by Phase 1 pre-grading)
 - that part of 109P that will be affected by Phase 1 pre-grading and will have its runoff diverted to a temporary erosion and sediment control pond (i.e., rather than to WET-02)
 - 301, 302 and 303 (Southgate Drive extension areas)
- Other Areas East of the Wetland Corridor, consisting of catchments
 - Pre-Development: 102 and 104
 - Post-Development: 102P and 104P

By virtue of the internal drainage of these "Other Areas", it is recognized that the runoff calculated by the water balance will not actually run off because of the lack of external outlets from the Site. In predevelopment catchments (and in the Phase 1 pre-grade areas that will divert to erosion and sediment control ponds instead of wetland areas), runoff will collect in low-lying, closed depressions and will be divided between evapotranspiration and infiltration. For these cases, the quantity of "runoff" has therefore been set to zero and the amount of recharge and evapotranspiration have been adjusted accordingly to account for the "runoff" volume. This adjustment procedure is described in the footnotes of Table 8a. In the post-development case, due to engineered drainage to infiltration galleries the vast majority of this would-be runoff water will be infiltrated due to negligible potential for evapotranspiration from these subsurface facilities.

It is noted that WET-10 has been identified as being eligible for removal (Grand River Conservation Authority, 2023). Despite this eligibility, it is expected that the general hydrogeological function of that

area will not be changed substantially due to its location adjacent to Maltby Road and the required development setbacks, both of which will limit the possible changes in grading in that area. This in turn will limit the possible changes to the water balance of that catchment. Therefore, though the water balance has been calculated with reference to WET-10, this reference is used for convenience and clarity (i.e., a known location with defined catchment area) and is not to be construed as a recommendation that WET-10 be retained.

5.1 EFFECTS OF DEVELOPMENT ON WETLANDS DUE TO CHANGES IN RUNOFF

Based on the conceptual model, which indicates that the wetland areas are mainly supplied by runoff and direct precipitation, it is important to ensure that the runoff in the post-development condition sufficiently matches the pre-development condition so that it does not disrupt the extant ecological communities.

In the post-development condition, runoff depths for the wetland catchments remain similar (ranging from 115 mm/yr to 215 mm/yr) to pre-development. However, due to the proposed development, some of the wetlands will undergo changes to their catchment areas, thus affecting the overall quantity of runoff that those wetlands receive.

For most of the wetlands, the change in overall runoff quantity will be minor, less than 10% difference between the pre-development condition and post-development condition. Some of the wetland areas are not expected to be affected at all because there is no planned development in their catchments (e.g., WET-03/-05, WET-04/-11, and WET-13). However, there are three wetland catchments for which the change in annual runoff is expected to be substantial and worthy of discussion:

WET-0	01	
0	Pre-Development Runoff:	1,949 m ³
0	Post-Development Runoff:	2,477 m ³
0	Change:	+527.9 m ³
0	% Change:	+27.1 %
WET-0	02	
0	Pre-Development Runoff:	13,394 m ³
0	Post-Development Runoff:	10,248 m ³
0	Change:	-3,146 m ³
0	% Change:	-23.5 %
WET-0	09	
0	Pre-Development Runoff:	8,758 m ³
0	Post-Development Runoff:	7,362 m ³
0	Change:	-1,397 m ³
0	% Change:	-15.9 %

See Appendix H3 for plots of the monthly runoff estimated for the pre-development case and after construction of Phase 1.

With respect to WET-01, the change is roughly consistent throughout the year (i.e., about +27% change in each month). This is because the changes at WET-01 are due to a change in the size of the catchment: area grading will result in a strip of land being added to the WET-01 catchment, increasing its size and therefore increasing the potential runoff contributions to that wetland. The change in

volume of runoff, expressed as a depth over the wetland area, will be about +188 mm/year, which is relatively minor given that water levels at this wetland area have tended to be relatively deep below the ground surface (about 1 to 1.5 mbgs). Impacts to the hydroperiod of the wetland are not expected.

With respect to WET-02, the change in runoff is also consistent throughout the year, ranging from about -23.8% through the growing season (April to September) to -20.7% in March. The consistency in this change is because the main change to the catchment area is its size, while its other characteristics (e.g., cover, soil type, topography) will largely be unchanged. Per assessment by NRSI, the ecological communities at WET-02 are hardy and likely to withstand the anticipated changes to runoff quantity received by the wetland area.

With respect to WET-09, the change in runoff is expected to vary over the course of the year from -27.4% in the cooler months to -13.1% in the growing season. This is because the main effect that Phase 1 will have on WET-09 will be due to the proposed compensation plantings, which will change the vegetative cover of its catchment area from cultivated land to predominantly wooded. NRSI has indicated that the water balance during the growing season is most important because it is when plants are most in need of moisture: because the expected change in runoff during the growing season is relatively modest (-13.1%) and the ecological communities at WET-09 are resilient, it is expected that WET-09 will not be substantially affected by the changes to its catchment and runoff quantities.

5.2 EFFECTS OF DEVELOPMENT WETLANDS DUE TO CHANGES IN RECHARGE

Due to the physical constraints of the Site and the requirement to infiltrate all stormwater, an analysis has been undertaken to consider the potential effects of increased recharge, and changes to the distribution of recharge across the Site.

In the post-development condition, recharge depths are also similar to the pre-development condition (ranging from 155 mm/yr to 260 mm/yr). Because the flow paths of recharge are dictated by subsurface conditions and the groundwater table, it is not as important to discuss recharge on the basis of wetland catchment areas.

Overall, on a Site-wide basis the recharge quantities are as follows:

•	Pre-Development Recharge:	209,540 m ³
•	Post-Development Recharge:	243,471 m ³
٠	Change:	+33,931 m ³
٠	% Change:	+16.2 %

This equates to an approximate increase in annual recharge depth (Site-wide average, excluding areas within the wetland limits) of approximately 46 mm/year from 287 mm/year pre-development to 333 mm/year following the construction of Phase 1.

The bulk of the change in recharge will occur in the developed catchments (e.g. facilities and parking areas constructed in catchments 202, 203 and 204, and the Southgate Drive extension in catchments 301, 302, and 303). These catchments (captured under the "Other Areas – West of the Wetland Corridor in the summary, Table 8c) will exhibit a nearly 50% increase in recharge due to the necessity to manage stormwater mainly via engineered infiltration facilities.

On a feature-by-feature basis, most of the wetland catchment areas will experience only minor changes to recharge. Exceptions are identified as follows:

•	WET-01			
	 % Change: 	+27.7 %		
•	WET-02			
	 % Change: 	-17.5 %		
•	WET-09			
	 % Change: 	+14.1 %		

It is noted that each of the wetlands identified above are perennial recharge features and are vertically separated from the groundwater table (i.e., they do not receive groundwater discharge).

There are two primary ways by which changes to groundwater recharge can affect the wetland areas on-Site:

- 1. Increases in recharge may cause the groundwater table to rise, potentially affecting the hydroperiod of the wetland or causing flooding of the wetland area.
- 2. Reductions of recharge may affect the quantity of groundwater discharge that is received by the wetlands.

The first effect (i.e., flooding due to increases in recharge) is not likely to occur following Phase 1 construction. This is because most of the wetland areas exhibit perennial recharge conditions and substantial separation from the groundwater table. Therefore, increases in recharge would need to be very large to cause mounding of the groundwater table to impact wetland hydroperiods. As a demonstration of this, a groundwater mounding analysis will be completed for WET-02, specifically with respect to the erosion and sediment control pond/ infiltration gallery which is proposed to be built adjacent to its buffer area (see Section 6).

The second effect (i.e., decreases to discharge received by wetlands) is also unlikely to occur following Phase 1 construction. This is because only certain wetlands receive groundwater discharge to begin with (i.e., WET-13 and WET-06/-07/-12) and therefore only those wetlands are susceptible to this effect. However, Phase 1 of the development is not expected to substantially affect the recharge occurring in the catchments of those wetlands (-1.2% at WET-06/-07/-12; 0% at WET-13). Furthermore, the recharge occurring at "Other Areas – East of Wetland Corridor" (i.e., upgradient areas in which groundwater recharge might supply the groundwater discharge that occurs at those wetlands) will also not be affected much (-0.8%) by the development of Phase 1. Therefore, discharge-related impacts are not expected to occur.

6. GROUNDWATER MOUNDING

As previously mentioned, there is no overland flow outlet from the Site. As such, the stormwater management plan for the Site will involve the retention and infiltration of the bulk of the stormwater received by the Site. The proposed development will involve a substantial increase in impervious land area and so the proposed development will result in a corresponding increase in groundwater recharge, which has the potential to cause groundwater mounding at the proposed enhanced recharge facilities.

For much of the Site area, this is not expected to be of concern due to the distance between the proposed recharge facilities and local wetland receptors, as well as the depth of the groundwater table below surface.

However, due to the proximity of a proposed erosion and sediment control (E&SC) pond to WET-02 (see catchment 109P, Appendix H2), a groundwater mounding analysis was conducted to determine whether enhanced recharge at those locations might influence that wetland.

The water balance for the catchments that supply the E&SC Pond are provided in Appendix H2 (see Catchments "109P (E&SC Pond) Upland" and "109P (E&SC Pond) Forest"). The calculations indicate a maximum combined monthly runoff of 639 m³ (in May), or about 18 mm/day when expressed as a depth of runoff distributed over an assumed E&SC Pond area (about 1,200 m²).

Based on this average infiltration rate, groundwater mounding calculations were conducted according to the Hantush method (Hantush, 1967). The calculations were completed in spreadsheet format and copies of the output calculation sheet is provided in Appendix I.

The groundwater mounding was computed for assuming a hydraulic conductivity of underlying soil of 5x10⁻⁶ m/s (per an infiltration test conducted by AECOM at 332.7 masl near WET-02).

For the E&SC Pond under consideration, the increase in groundwater level at the adjacent wetland boundary was estimated to be as follows:

٠	Estimated Groundwater Level (Pre-Development):	331.20 m
٠	Estimated Rise in Groundwater Table at WET-02 Boundary (Δ h):	0.1 m
•	Estimated Groundwater Level (Phase 1 stage):	331.30 m

Compared to the ground surface level at the wetland in question (approximately 334 masl at PZ-03 adjacent to WET-02), it is expected that, post-development, the mounding effect of the E&SC pond will not cause groundwater levels to rise to ground surface at the wetlands. This is an important finding because it means that the prevailing "recharge" conditions will not be disrupted and that the proposed E&SC Pond will not cause flooding of the wetland or changes to its hydroperiod.

7. CONSTRUCTION DEWATERING

Groundwater control is a key factor to consider when entering the construction phase of any project, as it can result in unforeseen project delays and substantial costs if not adequately addressed. The construction of the proposed development will include the excavation for municipal services, an on-Site sewage pumping station, storm sewers, infiltration galleries, storm water management ponds, and building foundations.

Generally, the groundwater levels on-Site seldom rise above 4 mbgs and lie even deeper along the western half the Site (e.g., west of the woodlot area, 6 to 10 mbgs) where the bulk of the industrial development is proposed to occur. The shallowest groundwater levels were observed at MW22-10 and MW22-07, both of which are located at low-lying areas.

Based on the nature of the proposed development (i.e., large industrial buildings and parking lots) and the hummocky terrain of the Site, a considerable amount of cut and fill grading work will need to be completed to flatten the existing topography. As such, there is some uncertainty as to whether excavations will encounter groundwater but due to the significant depth to groundwater it is considered to be a low likelihood.

Based on the characteristics and prevalence of relatively coarse soils on-Site, where excavations do extend below groundwater it is likely that dewatering in excess of 50,000 L/d will be required. Dewatering rates may even exceed 400,000 L/d depending on the types of materials encountered (e.g., sand and gravel will require greater dewatering rates for groundwater control) and the depth of excavation below groundwater.

A more definitive statement regarding approval requirements will be provided during detailed design when the grading, servicing, and foundation elevations are near completion and when more seasonal groundwater level data has been collected (i.e., via the installed dataloggers). The construction dewatering considerations will be reassessed at that time to determine the appropriate approval required (i.e., EASR or PTTW) and to develop appropriate monitoring and mitigation plans as required by the approval.

For the time being, it is expected that construction dewatering and discharge management can be achieved through common means (e.g. sump pumping, erosion and sediment control best practices) and will not be a cause of significant technical difficulty for the project.

8. IMPACT ASSESSMENT

8.1 RECEPTOR IDENTIFICATION AND SCREENING OF IMPACTS

The first step in impact assessment is to identify the receptors, which are those parts of the environment which may be affected by a development. Following that, a screening assessment can be undertaken to determine whether each receptor may be affected by the proposed development, whether due to changes in the quantity or quality of water available to that receptor.

For the Site and proposed development, five receptors have been identified and the screening exercise is summarized in the table below:

Receptor	Potential Impacts Related to		Rationale
	Water Quantity	Water Quality	
			Mapping from the GRCA indicates the presence of multiple Provincially Significant Wetlands on the Site.
On-Site Wetland Areas			There is potential that the proposed development might negatively impact the amount of surface runoff entering into these low-lying areas which in turn will affect the amount of groundwater recharge available for the regional groundwater table
Municipal Water Resources/ Source Water Protection			The Site lies within a WHPA-D (2) area as well as an IPZ-3 (1). The Site is also considered a significant groundwater recharge area. The proposed development and potential dewatering activities should be reviewed in light of the source protection context and policies.
Private Water Wells			Numerous domestic water well records within the Study Area and GMBP is aware of a history of local construction projects affecting overburden wells during dewatering. Some local well users are using overburden wells for their primary water supply and so the integrity of the shallow groundwater is important to maintain during construction.
Construction Dewatering Activities	•		Construction dewatering may be required to complete servicing activities. The approval and operation of groundwater control systems will be considered a potential water quantity impact to the project. The dewatering discharge may result in impacts to surface water quality for which the construction project is responsible to mitigate.

8.2 WETLANDS

8.2.1 IMPACTS RELATED TO QUANTITY

As discussed in Section 5 ("Water Balance"), the proposed development is generally expected to

- a) increase the overall amount of recharge on-Site
- b) significantly affect the runoff that is contributed to three of the wetland areas
 - i. WET-01,
 - ii. WET-02 and
 - iii. WET-09.
- c) Significantly affect the amount of recharge that occurs in the catchments of three wetland areas:
 - i. WET-01,
 - ii. WET-02 and
 - iii. WET-09.

With respect to the overall increase in recharge, it has been explained (Section 5) that because most of the wetland areas are not groundwater-fed, the change in recharge on-Site is not expected to have a deleterious effect on the wetland areas. It has been noted that some wetlands on-Site (WET-06/-07/-12 and WET-13) are, at certain times of the year, connected to the groundwater table and therefore do occasionally receive some groundwater discharge. However, in the hydrogeological context, the catchment area that supplies discharge to these wetlands is the area east of the wetland corridor. The water balance for those areas (i.e., see Table 8a, "Other Areas – East of Wetland Corridor") will not be substantially affected by the construction of Phase 1 and so the general increase in recharge on-Site is not expected to impact the wetland areas.

With respect to runoff, it has been identified that the proposed development will result in alterations to the existing catchments of WET-01, WET-02 and WET-09, with the former two being affected by changes to the size of their runoff-contributing catchments and WET-09 being affected by a change in ground cover (i.e., existing cultivated land being used as compensation tree planting area). Discussion in Section 5.1 indicates that the changes to runoff are minor in the context of the specific ecological communities (e.g., tolerant species) and hydrogeological conditions (i.e., existing groundwater levels at significant depths below wetland surface, so reductions in runoff are not likely to substantially affect the hydroperiod of the wetlands).

With respect to changes in the distribution of runoff in specific wetland catchment areas, it has been identified that because most of the wetlands do not intersect the groundwater table (i.e., recharge features with perennial separation from groundwater) that local changes to recharge are not expected to affect their water balance because recharged water would not ultimately be available to the wetlands (i.e., no groundwater discharge). However, because of the proximity of an E&SC Pond adjacent to the buffer area of WET-02, a groundwater mounding analysis was conducted to determine whether the infiltration occurring at those facilities will affect the water balance of the nearby wetlands. The mounding analysis (described in Section 6) indicates that the E&SC Pond will not cause a rise in groundwater level large enough to affect the water quantity at their respective nearby wetland (WET-02).

Therefore, it is expected that Phase 1 of the proposed development will not impact the wetlands in terms of water quantity.

8.2.2 IMPACTS RELATED TO QUALITY

With respect to water quality, it is not expected that the wetlands will be impacted by the proposed development.

This is because the proposed stormwater management design will ensure that the wetlands only receive runoff from vegetated, non-paved surfaces. Therefore, the runoff received by the wetlands will not have been affected by contact with paved surfaces, which would have caused the transport of some contaminants (e.g. salt) to the wetland areas.

Stormwater from paved areas will be infiltrated on-Site in a series of infiltration galleries located in the proposed developed area (e.g., in Catchment 302 to manage runoff from the Southgate Drive extension; in Catchment 202 to manage runoff from the proposed parking areas and warehouse facility). Prior to infiltration a level of control on runoff quality will be provided by catchbasin shields. Infiltration galleries will also include "isolator rows" which will provide added quality control (e.g.,

removal of TSS). It is recognized that these systems cannot effectively remove salt but even so this is not expected to impact the wetlands on-Site because the infiltration activities will mainly be occurring downgradient of and a significant distance away from the wetland areas.

It is noted that a portion of Catchment 109P will be graded so that it drains runoff toward WET-02. Potential impacts to WET-02 will be mitigated by means such as seeding of the pre-graded area to stabilize soil and minimize entrainment of sediment, check dams and other sediment capture structures will be installed in the collector swale, construction of a spreader structure at the outlet to dissipate energy and minimize erosion.

Therefore, no impacts to water quality in the wetlands are anticipated as a result of Phase 1 of the proposed development.

8.3 MUNICIPAL WATER RESOURCES / SOURCE WATER PROTECTION

The City of Guelph provides water services to its residents via a network of bedrock water supply wells, the nearest of which are located approximately 4.5 km northeast (i.e., Burke Well) and northwest (i.e., Downey Well) of the subject Site.

Upon review of the available mapping from the MECP's Source Protection Information Atlas, the Site was identified to be within a designated Wellhead Protection Area D (WHPA-D) with a vulnerability score of 2, an Intake Protection Zone 3 (IPZ-3) with a vulnerability score of 1, and a Significant Groundwater Recharge Area.

8.3.1 IMPACTS RELATED TO QUANTITY

The Site is proposed to be developed with municipal water service and therefore impacts related to the ongoing taking of water need not be assessed.

However, the numerous closed kettle depressions on-Site are understood to be significant groundwater recharge areas that provide recharge to the regional overburden groundwater table, which in turn provides recharge to the underlying bedrock aquifer (as determined by the deep borehole data and well records from GLL 1997 and Golder 2007). Therefore, it is noted that the proposed development must avoid reduction of recharge.

The water balance analysis completed indicates that the construction of Phase 1 of the development will result in an increase in overall recharge by about 16%. As such, the proposed development is not expected to reduce the quantity of groundwater available for municipal resources.

8.3.2 IMPACTS RELATED TO QUALITY

Upon review of the *Tables of Drinking Water Threats (Clean Water Act, 2006)*, there are no listed "Significant" drinking water threat activities associated with the above-mentioned vulnerable zones and scores.

As such, it is not expected that the Site will require a Risk Management Plan. In any event, the City of Guelph will require a Section 59 Policy Applicability Review Form to be completed and submitted with any application concerning the proposed development. A copy of the Section 59 Policy Applicability Review Form will be sent under separate cover.

As a matter of general practice and means of protecting groundwater supplies, it is recommended that once the groundwater monitoring wells on-Site are determined to have served their purpose, all such wells shall be decommissioned by a licensed well drilling contractor (as per O.Reg.903).

8.4 PRIVATE WATER WELLS

The well records search summarized in Table 1 identified 14 records of domestic water supply wells at neighboring properties within 500 m of the subject Site, 6 of which were reported to be installed within the overburden.

8.4.1 IMPACTS RELATED TO QUANTITY

The Site is proposed to be developed with municipal water service and therefore well interference need not be assessed.

As discussed in Section 8.3.1, stormwater management designs are being proposed to ensure that surface water runoff and groundwater infiltration are being maintained post-development. As such, groundwater recharge occurring on the Site will continue providing recharge to the groundwater table, thus maintaining the quantity of groundwater available for nearby water well users, especially those residences that are supplied by overburden wells.

The construction of Phase 1 of the proposed development is not expected to cause groundwater quantity-related impacts to the water supply available to private wells on other nearby properties.

8.4.2 IMPACTS RELATED TO QUALITY

Based on the nature of proposed land use (industrial), potential exists for groundwater quality to be impacted by on-Site activities.

However, of the 6 identified overburden water supply wells, 5 of those records are located along Maltby road, east of the Site (i.e., MECP Well IDs: 6703150, 6703384, 6703848, 6707995, 6711246). Based on the observed regional groundwater flow direction, these locations are considered to be located hydraulically upgradient of the Site; and thus, the risk for potential groundwater quality impacts from on-Site activities to affect these water supply wells is considered low.

The sixth overburden water supply well record (MECP Well ID: 6708329) is plotted just northwest of the Site, where a temporary stormwater management pond exists at the current terminus of Southgate Drive. It is likely this well is no longer in use and is likely to have been decommissioned with the development of other industrial properties along Southgate Drive.

For other nearby private water well users whose wells are installed within the limestone bedrock, the risk for water quality to be impacted by on-Site activities is considered low due to the separation provided by the thickness of the overburden (i.e., bedrock subcrops around 27 to 42 mbgs). Furthermore, various well records indicated an older till layer overlying the bedrock which provides further protection from potential impacts entering into the bedrock aquifer.

Therefore, the construction of Phase 1 of the proposed development is not expected to cause impacts to the groundwater quality available to known private water well users.

8.5 CONSTRUCTION OF DEVELOPMENT

This section addresses the potential for groundwater and hydrogeological phenomena to impact the construction of the project. Specifically, this relates to requirements for construction dewatering.

8.5.1 IMPACTS RELATED TO QUANTITY

Generally, the taking of water during construction dewatering activities may result in the lowering of the water table at nearby residential water wells. It can also potentially have a deleterious effect at nearby ecological receptors where groundwater discharge contributes to these environments.

As, discussed in Section 8.4.2, well records for domestic water supply wells finished within the overburden have been identified to be located approximately 250 m east of the Site. Based on the observed groundwater levels at the Site, these well records are considered to be located hydraulically upgradient. As such, based on the separation distance and the direction of groundwater flow, these domestic water supply wells are not likely to be affected by the temporary construction dewatering.

Furthermore, most of the wetland features on Site have been identified to be groundwater recharge areas. As such, the groundwater taking during dewatering is not expected to have affect the water balance of those features as the main contributor of water to these features is surface runoff.

For those wetland features that are at times subject to groundwater discharge (i.e., WET-13, WET-06/-07/-12), construction dewatering for Phase 1 is not expected to impact them because of the significant distance between the Phase 1 area and those wetlands.

8.5.2 IMPACTS RELATED TO QUALITY

The analytical results for the groundwater samples collected indicate the groundwater on-Site meets the PWQO, with the exception of MW3-09 which exceeded for iron and cobalt. These exceeding metal parameters appear to be localized to the area in which MW3-09 is located and are inferred to be naturally occurring. As MW3-09 is located within the wetland WET-07, there is no development proposed to occur at this location.

As such, these reported exceedances do not have implications for groundwater discharge during construction dewatering. In the areas where construction is proposed, the groundwater on-Site is suitable for discharge to land provided that sediment control measures are implemented.

9. SUMMARY

A Hydrogeological Study has been completed with respect to a site plan approval application for Phase 1 of a proposed industrial development at 384 Crawley Road, Guelph.

The study comprised of several aspects, including a desktop study of available geological and hydrogeological information; field activities such as a subsurface investigation, overburden monitoring well sampling and water level surveying, installation of shallow nested piezometers and water level surveying, and a site reconnaissance to assess on-Site drainage features.

The collected information was used to complete a hydrogeological impact assessment concerning Source Water Protection policies, nearby sensitive/ecological areas and groundwater users.

The findings of the study are as follows:

- The Site is located near the southern city limit of Guelph at the address 384 Crawley Road, Guelph, Ontario. The Site occupies an area of approximately 82 hectares.
- Phase 1 of the proposed development is proposed to involve construction of a warehouse, parking areas, roadways, and pre-graded areas within an area of approximately 24.0 ha in the western portion of the Site.
- Topographically, the Site can be described as hummocky with numerous rolling hills and lowlying closed depressions areas. Through the center of the Site, a low-lying area extending north-south exists described as the wetland corridor.
- Ecological consultant NRSI identified 13 wetland features present at the Site: for the purposes of the project these have been named WET-01 through WET-13.
 - An assessment according to Grand River Conservation Authority policies was conducted in respect of wetland WET-10 and it as found that WET-10 meets the policy criteria for wetland removal or encroachment. At this time, however, no permits for removal have been issued.
- The stratigraphy of soil encountered varied but generally followed the following sequence:
 - o Topsoil
 - o Silt
 - Sandy Silt to Silty Sand
 - Upper Sandy Silt to Silty Sand Till
 - Sand and Gravel
 - Lower Sandy Silt to Silty Sand Till
- A total of 16 domestic wells (6 of which were screened within the overburden) were identified within the study area, two of which are located on-Site. The reported overburden monitoring wells are all located about 250 m east (upgradient) of the Site and are not expected to be affected by the proposed development. Nearby bedrock water supply wells are also at low risk due to the thickness of the overburden.
- The Site is proposed to be serviced by municipal water supply and sanitary sewers.
- With respect to Source Water Protection, the Site overlap a Wellhead Protection Area WHPA-D vulnerability score 2, Intake Protection Zone IPZ-3 vulnerability score 1, and a significant groundwater recharge area. No "Significant" drinking water threats have been identified with respect to the proposed development. It is anticipated that a Risk Management Plan for Source Water Protection will not be required for the proposed development.
- Groundwater quality within the area of proposed construction generally meets the Provincial Water Quality Objectives. Construction dewatering is expected to be suitable for discharge to the surface, provided that sediment control measures are implemented.
- Baseline surface water quality samples were collected from two wetlands (WET-02 and WET-06) to be compared to future post-development surface water quality. Analytical results indicated a lesser degree of mineralization compared to groundwater samples, demonstrating the influence of precipitation on the wetland water balance.
- A door-to-door well survey program was initiated with five residents who agreed to participate. Baseline water quality samples have been collected from each of the residents' wells.

- The wetland features on-Site exhibit a "recharge" condition and are primarily driven by surface water runoff. Groundwater was observed to be consistently lower than the surface at the wetlands; however, previous reports on the subject Site had reported groundwater levels near the surface at WET-06/-07/-12/ and WET-13 during high water table conditions, indicating occasional groundwater discharge conditions at those wetlands.
- A water balance assessment was completed according to the Thornthwaite and Mather method for pre-development conditions and for Phase 1 of the proposed development. This included a feature-based assessment of the catchments belonging to each of the on-Site wetlands.
- The results of the water balance assessment indicate that the construction of Phase 1 will result in the following changes relative to pre-development conditions:
 - Overall, recharge will increase by approximately 16% and runoff will decrease by approximately 6%.
 - Three wetlands are expected to have notable changes to their water balances as a result of Phase 1 of the development: WET-01, WET-02, WET-09. However, due to the hydrogeological conditions (recharge conditions, separation from groundwater table) and/or the tolerance of the ecological communities (i.e., insensitivity to changes in hydroperiod), no impacts are expected to occur.
 - The water balance for the remaining wetland features is not expected to be affected by Phase 1 of the development.
- A groundwater mounding analysis has indicated that the construction of a temporary erosion and sediment control pond within the pre-graded area near WET-02 will not result in flooding or changes to the hydroperiod at WET-02.
- Construction dewatering for servicing trenches and excavations have the potential to exceed 50,000 L/d if the groundwater table is encountered and may even exceed 400,000 L/d depending on the depth of excavation below the water table. However, due to the depth of groundwater across much of the Site, groundwater may not be encountered during excavation. Once a grading and functional servicing plan is developed for the project, the construction dewatering considerations should be revisited to determine the appropriate approval required (i.e., EASR or PTTW).

10. CONCLUSIONS AND RECOMMENDATIONS

Based on the analysis of information collected during this investigation, the following conclusions are made with respect to the proposed development:

- 1. The assessments indicate that Phase 1 of the proposed development is feasible to construct without negatively impacting the local wetland areas.
- 2. The proposed development is not expected to create a "significant" drinking water threat under the local Source Protection Plan.
- 3. Preliminary groundwater data and site servicing information indicate that construction dewatering will likely be minimal because excavation will generally occur above groundwater. Groundwater quality on-Site is suitable for discharge to land, provided that appropriate erosion and sediment controls are implemented.
- 4. Due to there being no overland flow outlet from the Site, the stormwater management design will be required to be managed stormwater via retention and infiltration.

In proceeding with the project, we provide the following recommendations:

- 1. The pre-grade design for catchment 109P shall include a diversion swale with outlet to WET-02 to mitigate potential loss of runoff that might otherwise have been caused by extensive area grading of the existing WET-02 catchment.
- 2. The diversion swale mentioned above shall include necessary erosion and sediment control facilities to prevent the discharge of sediment to and to mitigate the potential for erosion at WET-02.
- 3. Groundwater level monitoring is recommended to continue until site plan approval is issued. Future monitoring programs (i.e., through construction and post-construction periods) will be developed in conjunction with the Environmental Implementation Report.
- 4. As the details of the engineering design (e.g., grading, servicing, and foundations) are confirmed, the construction dewatering assessment shall be revisited (i.e., during detailed design) to provide greater certainty about the need for construction dewatering approvals (e.g., EASR or PTTW). If an approval is then determined to be necessary, then that approval shall be obtained from the Ministry of the Environment, Conservation and Parks, and the dewatering shall be carried out in accordance with the plans associated with the approval (e.g., monitoring and mitigation plan or water-taking and discharge plan).
- 5. As the details of future phases are confirmed, the hydrogeological impact assessment (including water balance calculations) shall be updated to confirm avoidance of impacts or that potential impacts will be sufficiently mitigated by the proposed development plan and/or stormwater management design.
- 6. When it is determined that the monitoring wells have served their purpose and are no longer needed, it is recommended that they be decommissioned by a licensed well driller in accordance with Ontario Regulation 903.

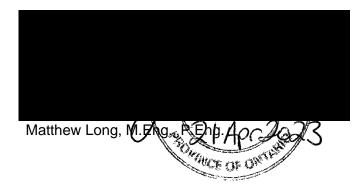
11. STATEMENT OF LIMITATIONS

The information in this report is intended for the sole use of Industrial Equities Guelph and its assignees. GM BluePlan Engineering Limited accepts no liability for use of this information by third parties. Any decisions made by third parties on the basis of information provided in this report are made at the sole risk of the third parties.

GM BluePlan Engineering Limited cannot guarantee the accuracy or reliability of information provided by others. GM BluePlan Engineering Limited does not accept liability for unknown, unidentified, undisclosed, or unforeseen surface or sub-surface conditions that may be later identified.

The conclusions pertaining to the condition of soils and/or groundwater identified at the Site are based on the visual observations at the locations of the investigative boreholes/monitoring wells and on the reported laboratory results for the selected soil and/or groundwater samples. GM BluePlan Engineering Limited cannot guarantee the condition of soil and/or groundwater that may be encountered at the site in locations that were not specifically investigated as part of this investigation.

This report is believed to reflect the condition of the Site as of February 2, 2023.


All of which is respectfully submitted,

GM BLUEPLAN ENGINEERING LIMITED

Per:

Abdi Faarah, Hons B.Sc., P.Geo.

12. REFERENCES

Anderson Geologic Limited. 2010. Hydrogeological Assessment for the Environmental Implementation Report: Southgate Business Park (23T-06503), Guelph, Ontario. Project No. 267. Dated November 2010.

Chapman, L.J. and Putnam, D.F. 1985. Physiography of Southern Ontario – 3rd Edition. Ontario Geological Survey. Special Volume 2.

Chapman, L.J. and Putnam, D.F. 2007. Physiography of Southern Ontario. Ontario Geological Survey, Miscellaneous Release, Data 228.

City of Guelph. 2019. Development Engineering Manual version 2.0.

Grand River Conservation Authority. (2023). Email correspondence from Ben Kissner, January 20, 2023.

Grand River Conservation Authority. 2022. Sourcewater Protection: Wellhead Protection Area (WHPA). Accessed online via the GRCA GIS <u>https://maps.grandriver.ca/web-gis/public/</u>

Karrow, P.F. 1968. Pleistocene Geology of the Guelph Area, Southern Ontario. Ontario Department of Mining.

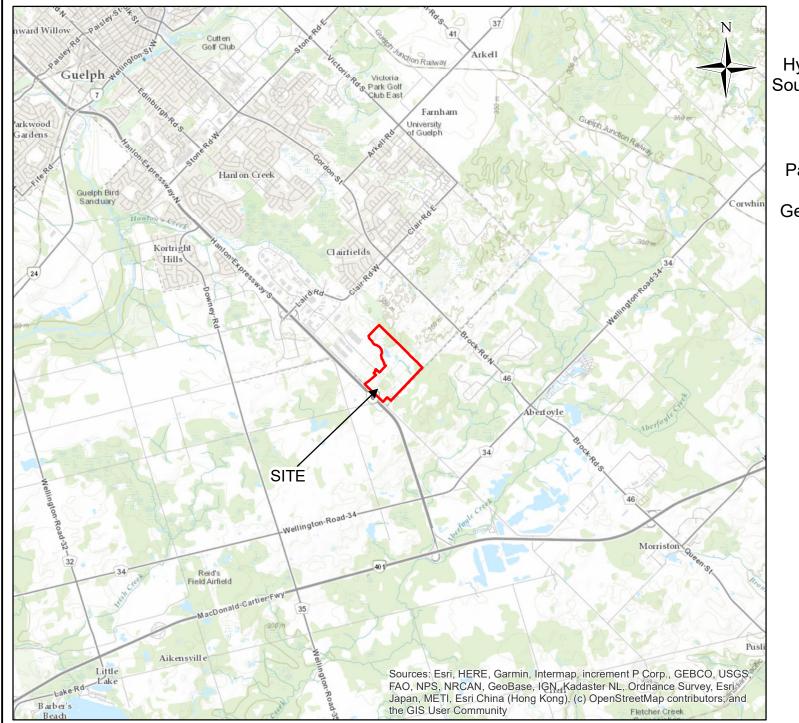
Ministry of the Environment, Conservation and Parks (MECP). 2019a. Source Protection Information Atlas. Accessed at:

https://www.lioapplications.lrc.gov.on.ca/SourceWaterProtection/index.html?viewer=SourceWaterProtection.SWPViewer&locale=en-CA

Ontario Geological Survey. 2010. Surficial Geology of Southern Ontario; Ontario Geological Survey. Miscellaneous Release, Data 128 – Rev.

Natural Resource Solutions Inc. (2023). Southgate Business Park (384 Crawley Road, Guelph) Wetland Removal Policy Assessment (Dated January 10, 2023).

NRSI. 2012. Southgate Business Park 23T-6503 Environmental Implementation Report. Project Number 636C. Dated February 2012.

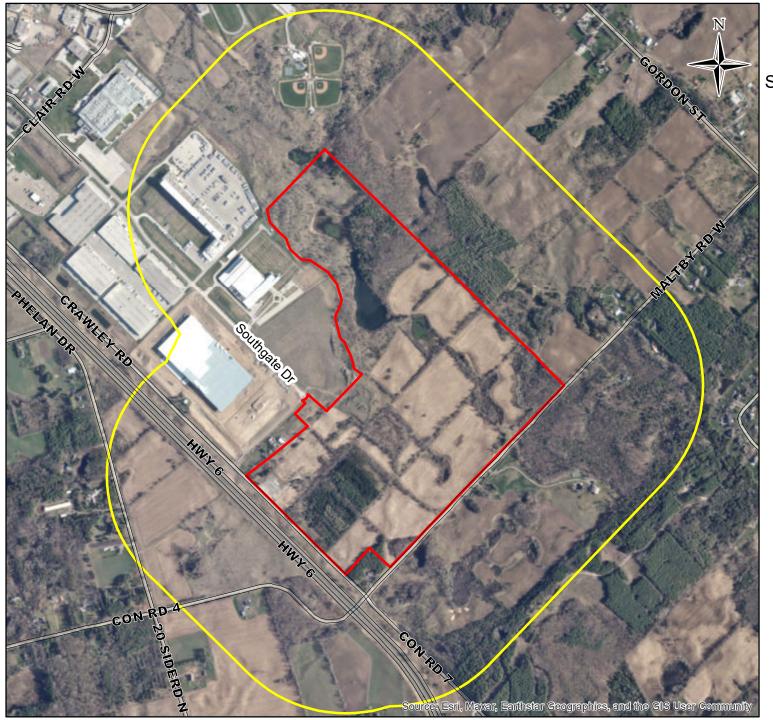

Peto MacCallum Limited. 2006. Geotechnical Investigation Proposed Gates of Guelph Industrial Subdivision South Gate Drive (PML Ref: 06KF038), Guelph, Ontario. Dated July 2006.

Toronto and Region Conservation Authority. 2017. Wetland Water Balance Risk Evaluation. Dated November 2017.

Toronto and Region Conservation Authority. 2016. Wetland Water Balance Monitoring Protocol. Dated September 2016.

Wood. 2017. Clair-Maltby Comprehensive Environmental Impact Study. Dated May 2018.

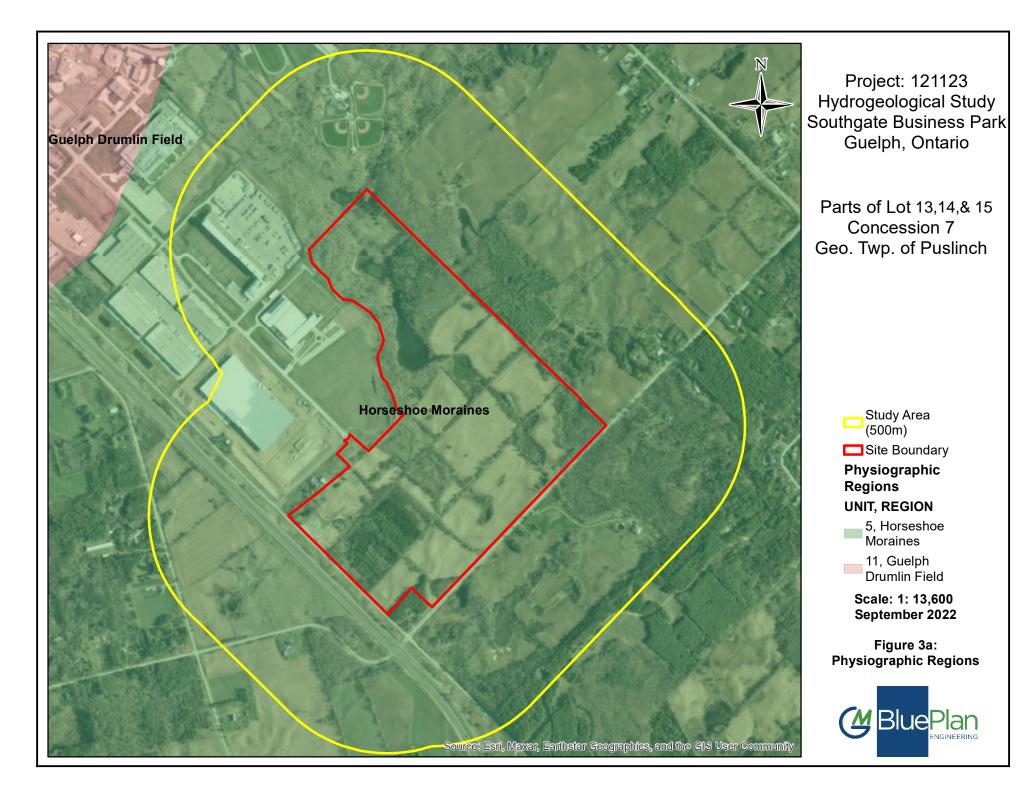
FIGURES

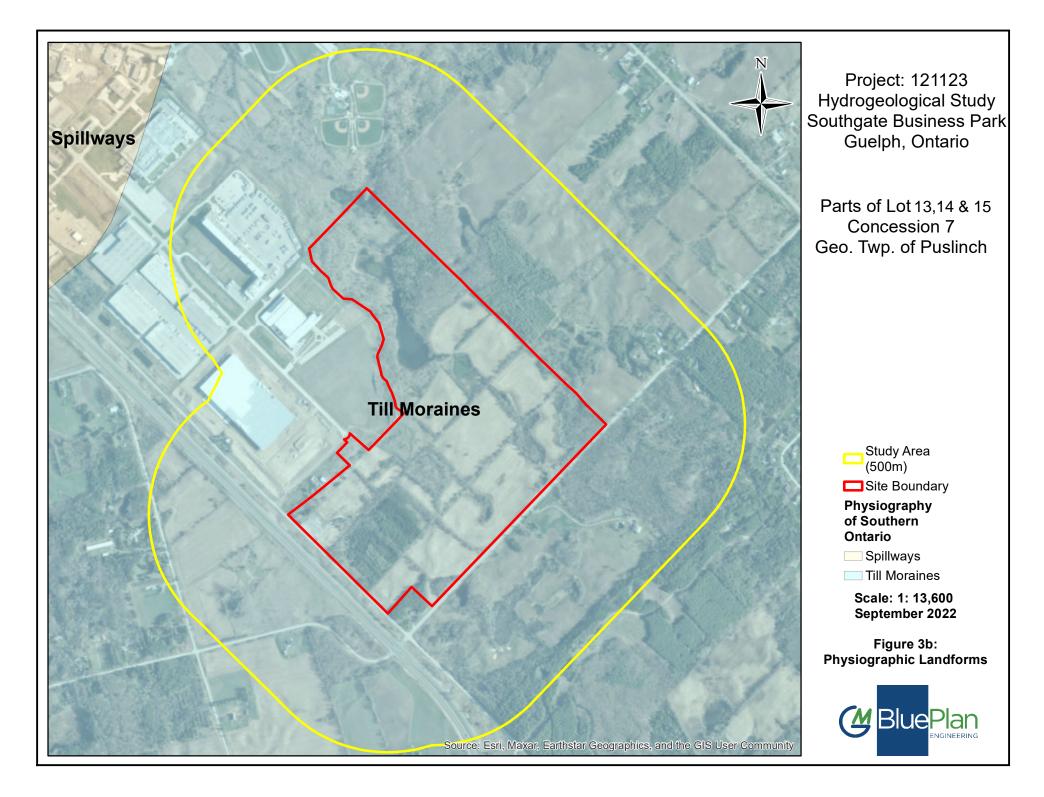

Parts of Lot 14 & 15, Concession 7 Geo. Twp. of Puslinch

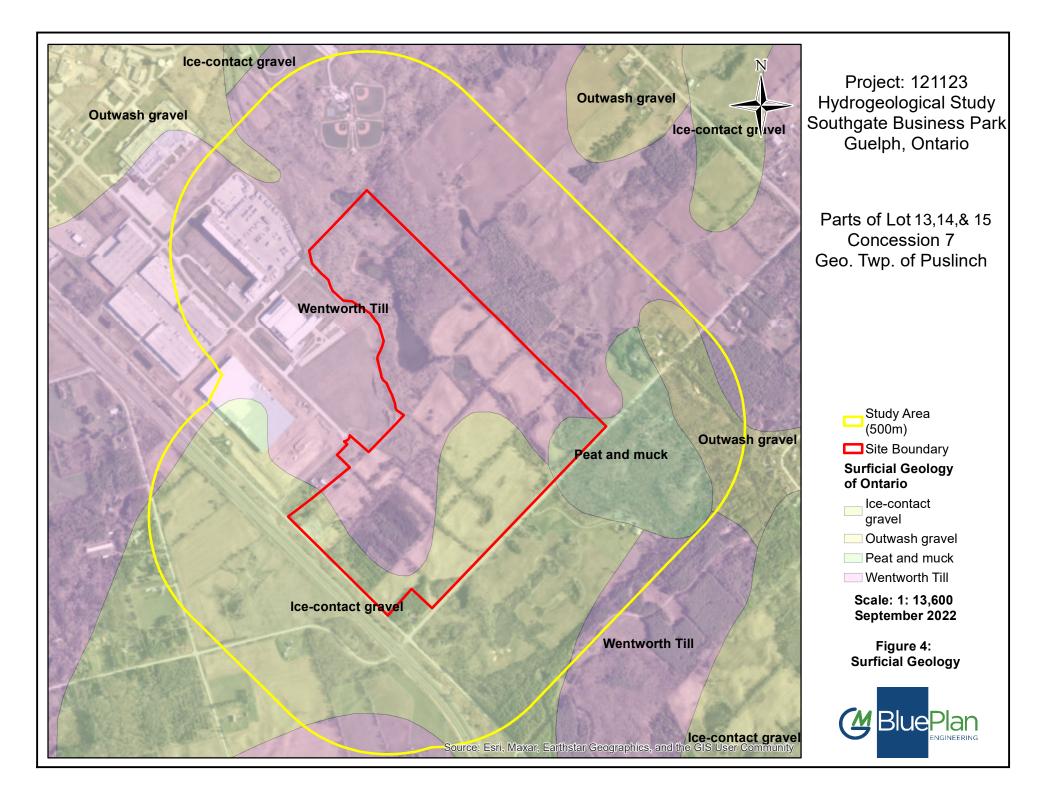
Site Boundary

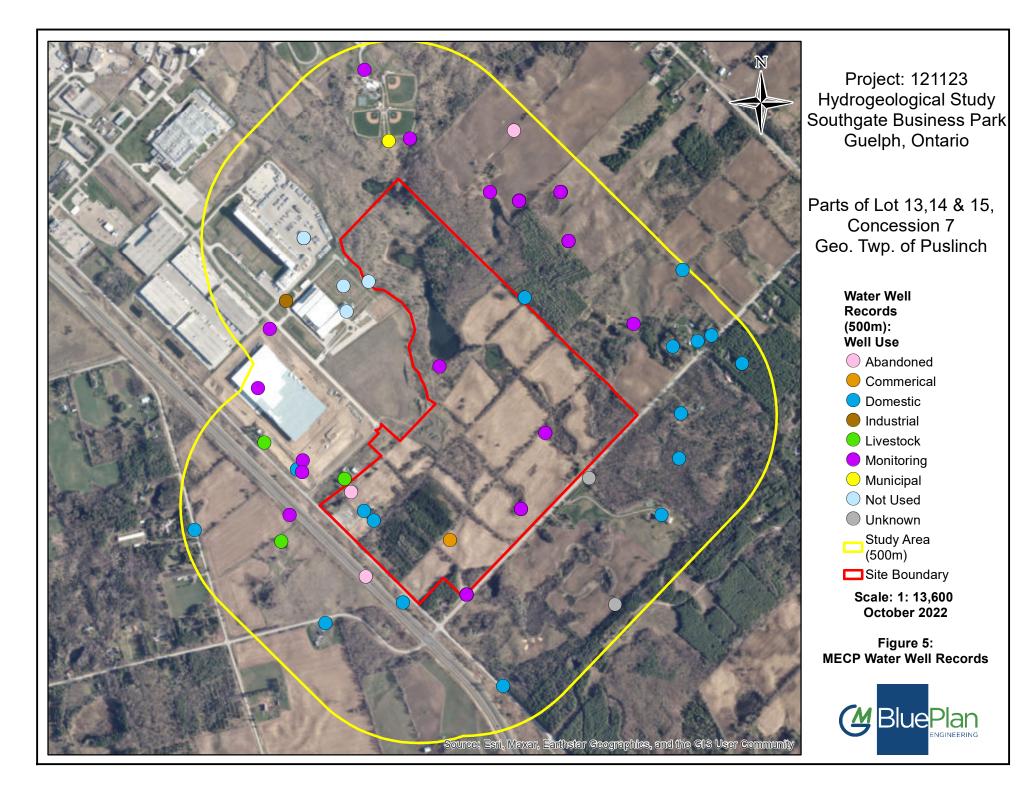
Scale: 1: 75,000 September 2022

Figure 1: Site Location


Parts of Lot 13,14,& 15 Concession 7 Geo. Twp. of Puslinch




Scale: 1: 13,600 September 2022


Figure 2: Study Area Layout

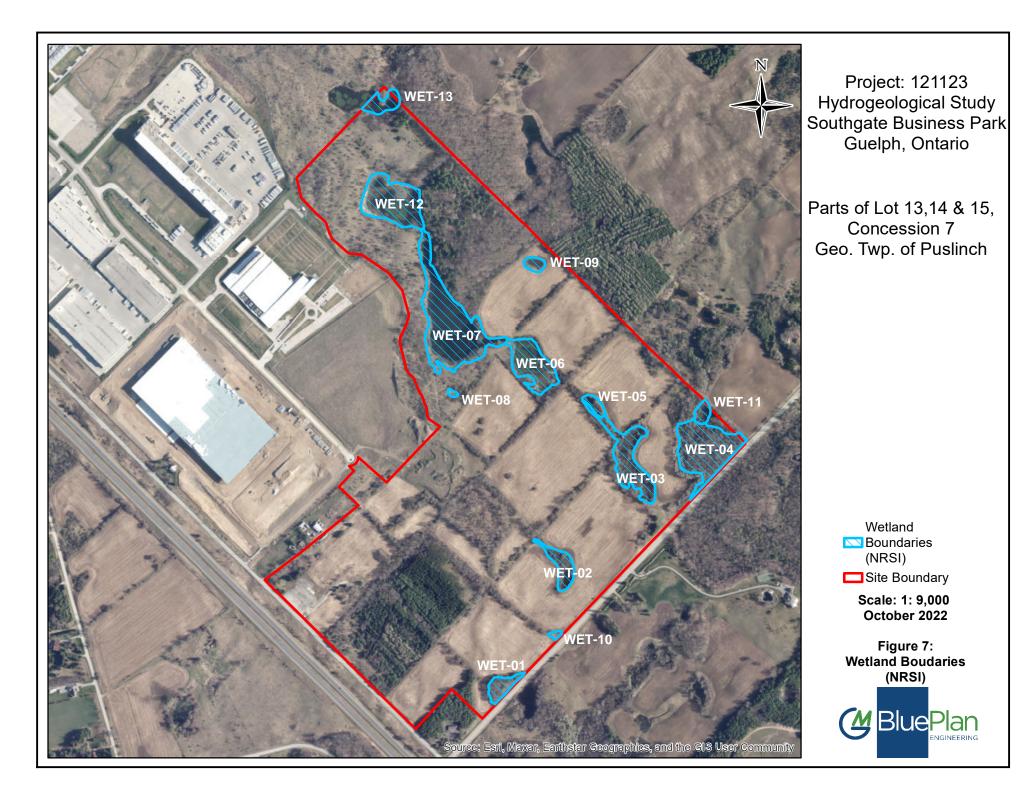
Parts of Lot 13,14 & 15, Concession 7 Geo. Twp. of Puslinch

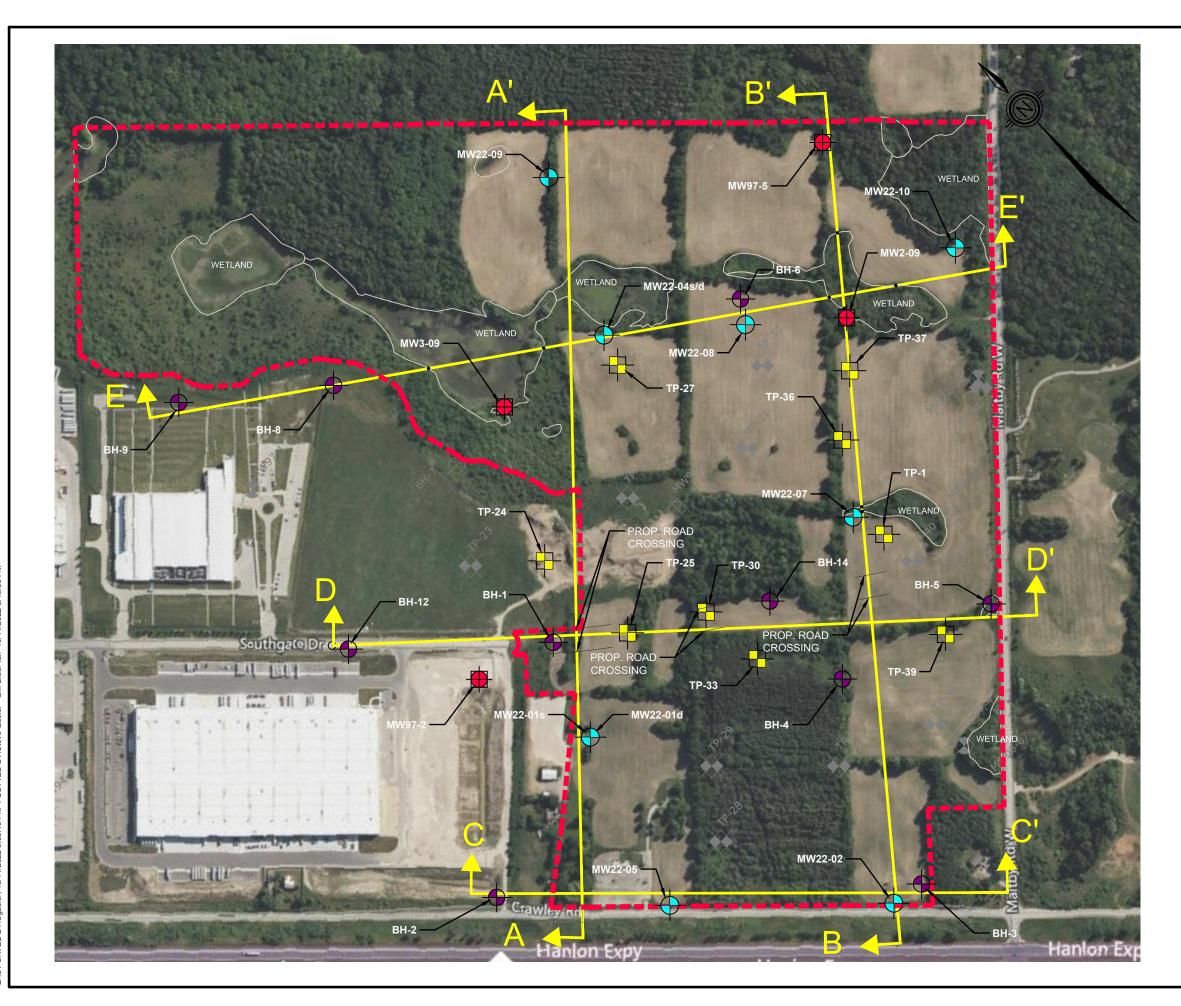
> Historical Investigation Points (Existing)

 Monitoring Wells (2022)
 Site Boundary

> Scale: 1: 9,000 October 2022

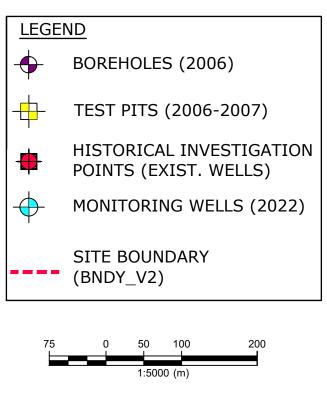
Figure 6a: Monitoring Well Locations


Parts of Lot 13,14 & 15, Concession 7 Geo. Twp. of Puslinch

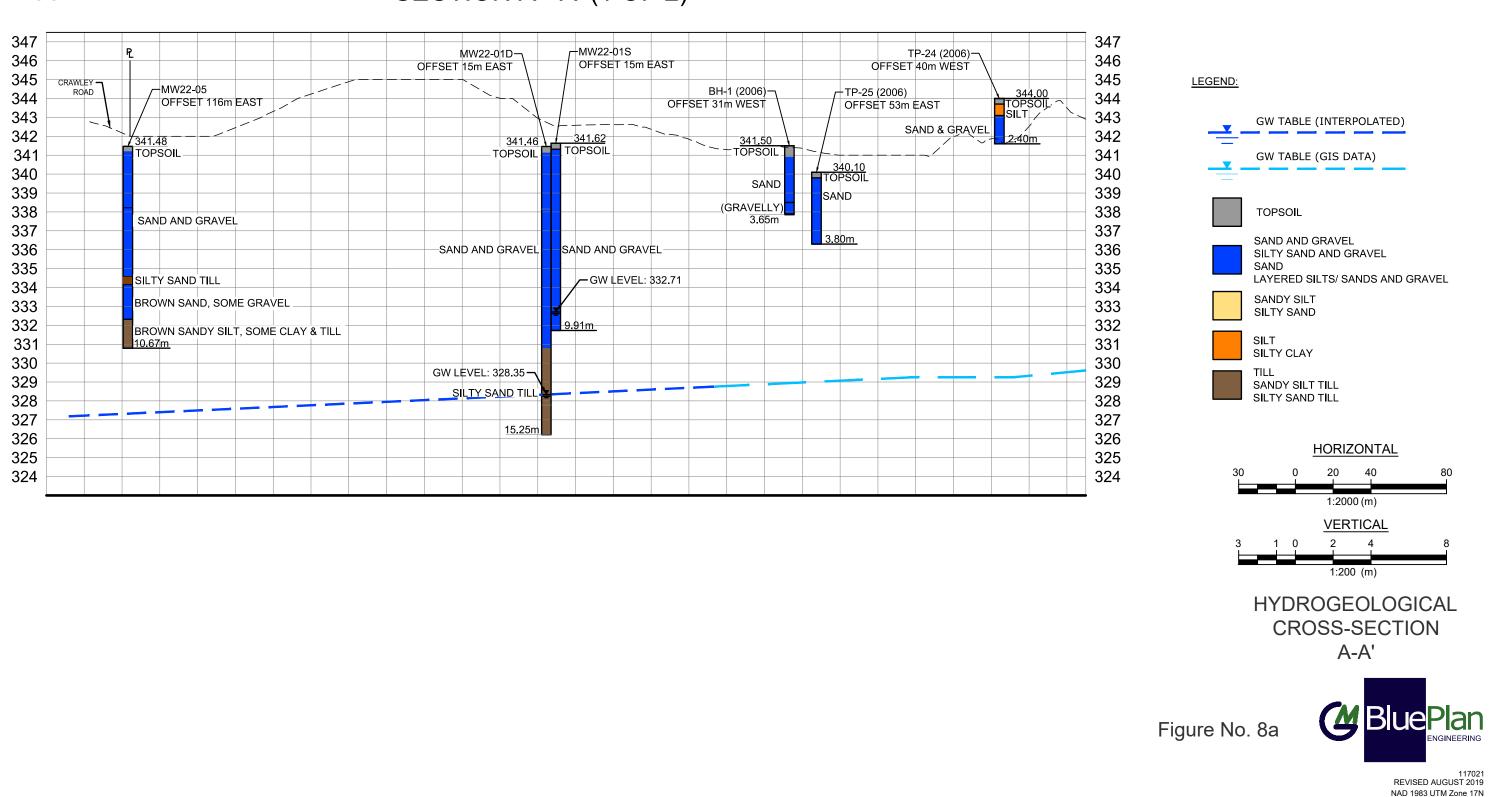

> ← Piezometers (approx.)
> □ Site Boundary

Scale: 1: 9,000 October 2022

Figure 6b: Piezometer Locations



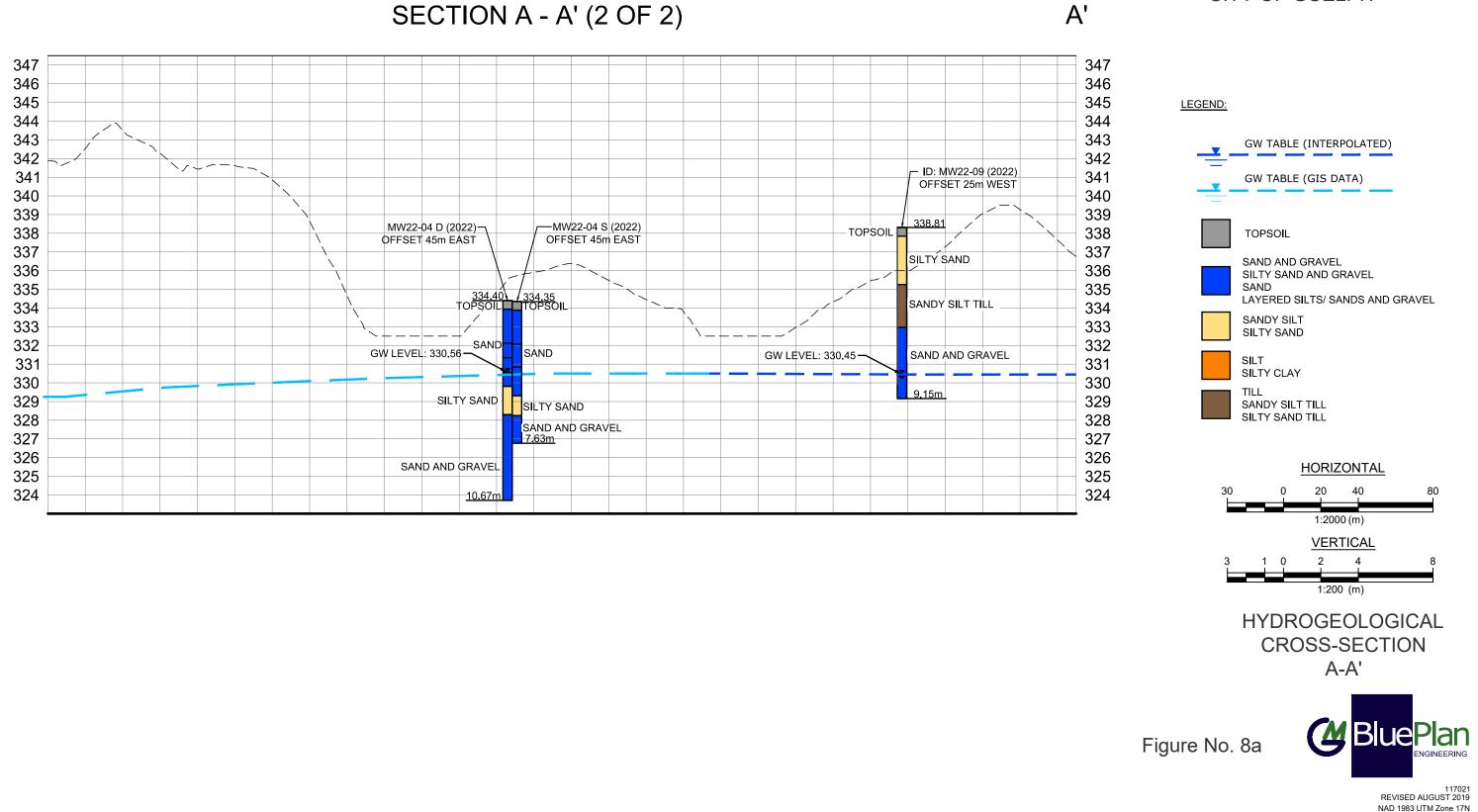
PROJECT: 121123 SOUTH GATE BUSINESS PARK HYDROGEOLOGICAL STUDY


CITY OF GUELPH

HYDROGEOLOGICAL CROSS-SECTIONS PLAN VIEW FIGURE No. 8

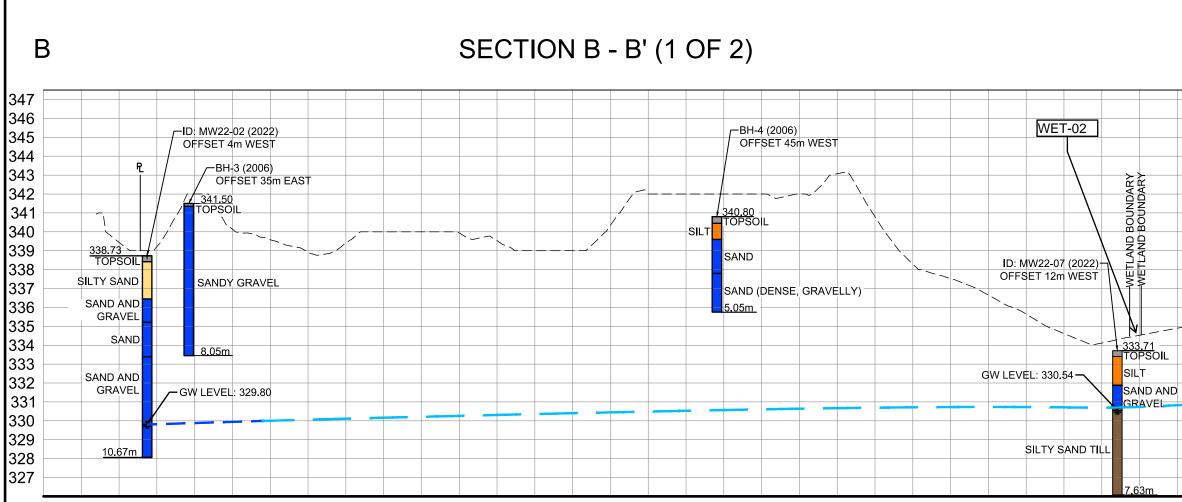
121123 REVISED SEPTEMBER 2022 Scale: 1:5000 | NAD 1983 UTM Zone 17N

SECTION A - A' (1 OF 2)


Α

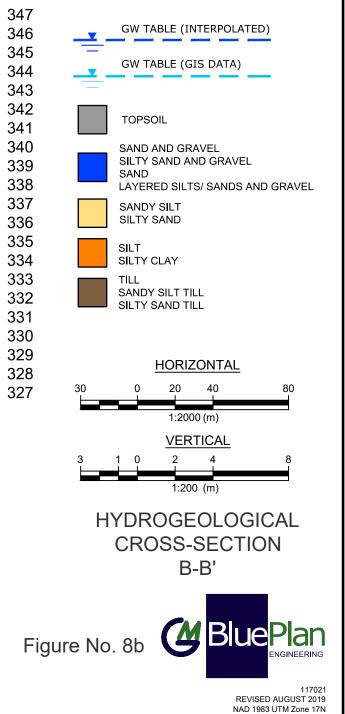
-ILE:\

PROJECT: 121123 SOUTH GATE BUSINESS PARK HYDROGEOLOGICAL STUDY

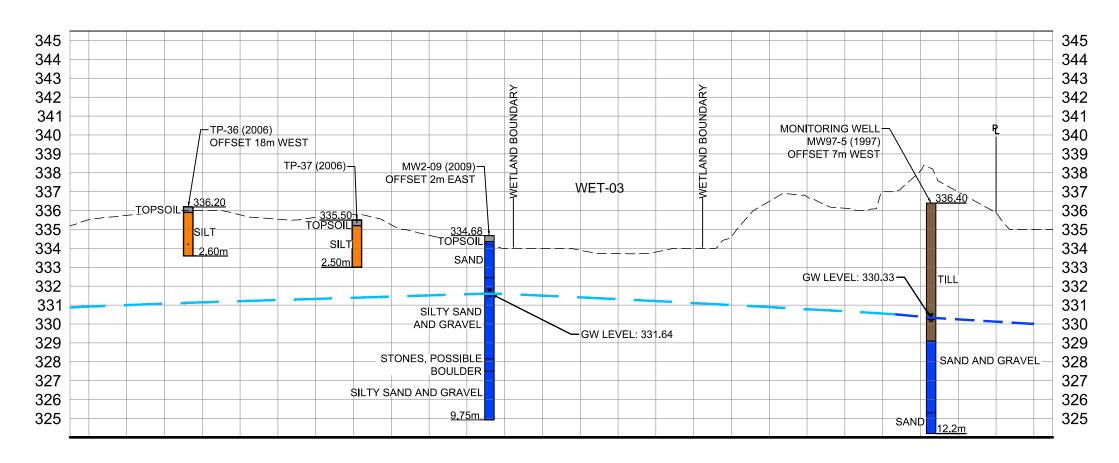


SECTION A - A' (2 OF 2)

PROJECT: 121123 SOUTH GATE BUSINESS PARK HYDROGEOLOGICAL STUDY



GM "ILE:W:/Guelph/121-2021/121123 South Gate Business Park5 Work In LAST SAVED BY:Sgasior, 10/11/2022 3:35:18 PM PLOTTED BY:Steve


PROJECT: 121123 SOUTH GATE BUSINESS PARK HYDROGEOLOGICAL STUDY

CITY OF GUELPH

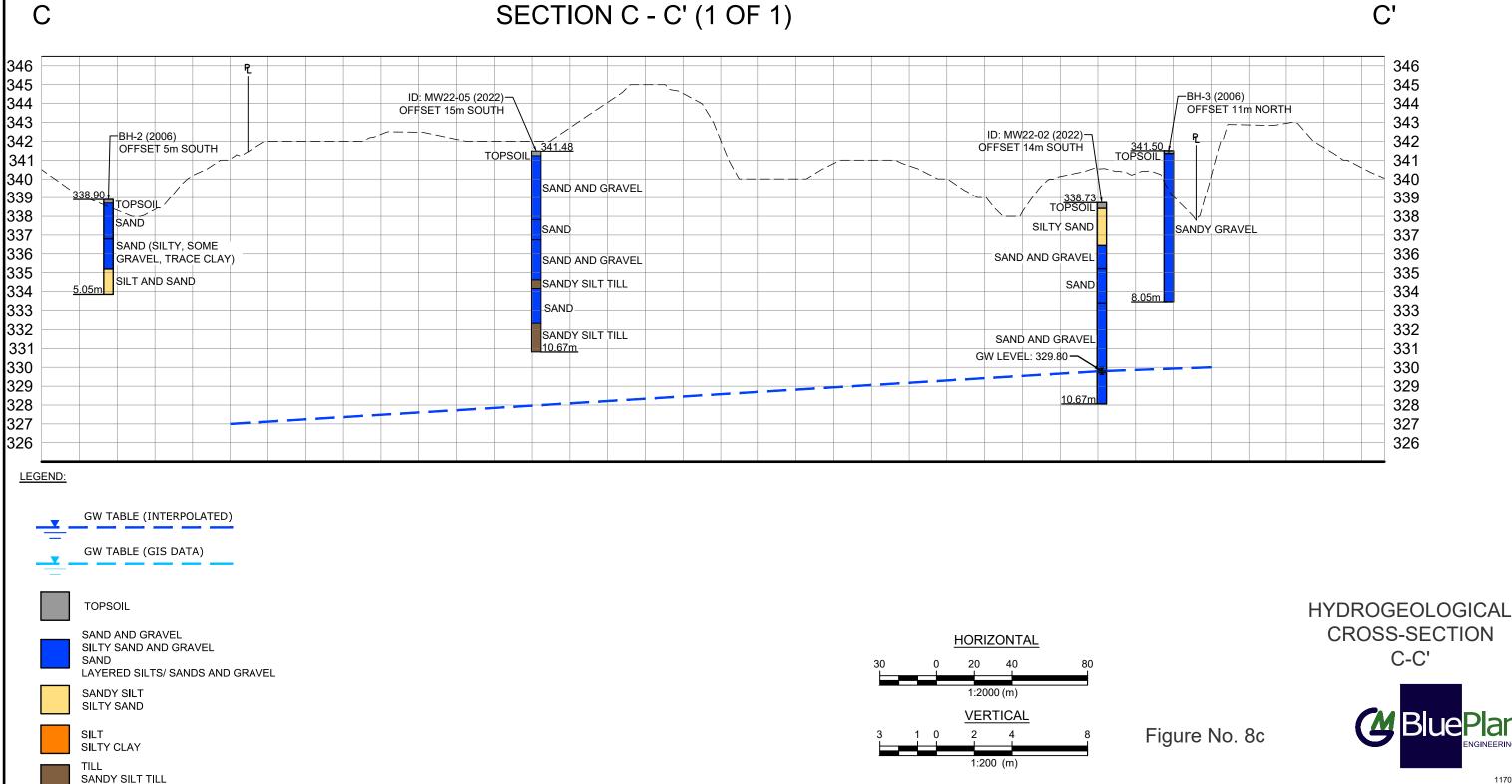
SECTION B - B' (2 OF 2)

(2) SEC B-B' =ILE:Wi\Guelph\121-2021\121123 South Gate Business Park\5 Work In Progress\Drafting\Sheets\121123 South Gate B LAST SAVED BY:Sgasior, 10/11/2022 3:35:18 PM PLOTTED BY:Steve Gasior - GM BluePlan 10/11/2022 3:50:13 PM

PROJECT: 121123 SOUTH GATE BUSINESS PARK HYDROGEOLOGICAL STUDY

CITY OF GUELPH

LEGEND:


B'

HYDROGEOLOGICAL CROSS-SECTION B-B'

Figure No. 8b

С

С С

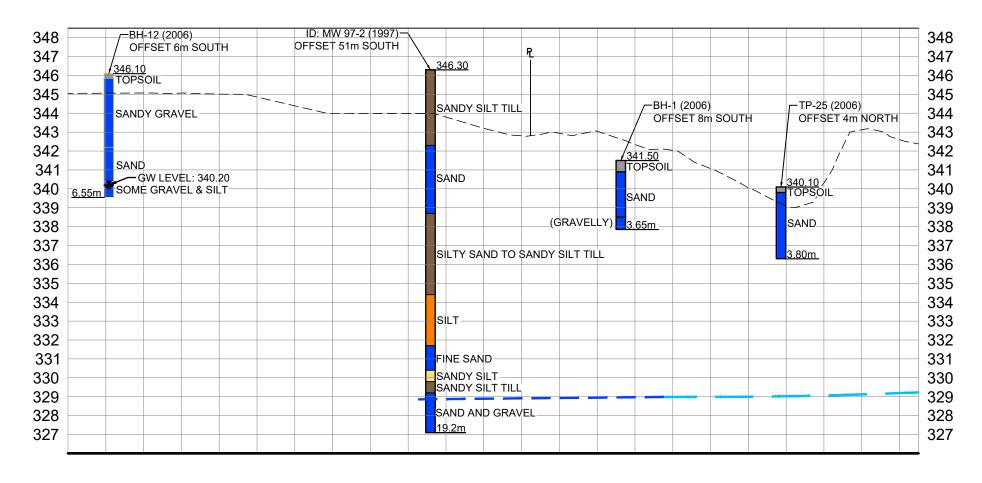
s\12⁻ 10/1

Progress\Draft Gasior - GM E

illE:Wi\Guelphi121-2021\121123 South Gate Business Parkl5 Work In F AST SAVED BY:Sgasior, 10/11/2022 3:35:18 PM PLOTTED BY:Steve

SILTY SAND TILL

SECTION C - C' (1 OF 1)


PROJECT: 121123 SOUTH GATE BUSINESS PARK HYDROGEOLOGICAL STUDY

CITY OF GUELPH

BluePlan ENGINEERING

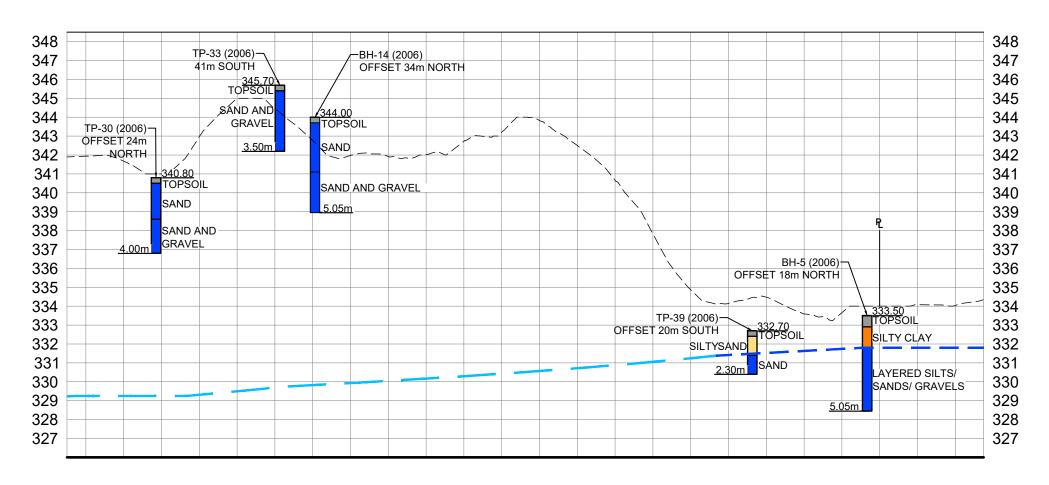
D

SECTION D - D' (1 OF 2)

PROJECT: 121123 SOUTH GATE BUSINESS PARK HYDROGEOLOGICAL STUDY

CITY OF GUELPH

LEGEND:



HYDROGEOLOGICAL CROSS-SECTION D-D'

Figure No. 8d

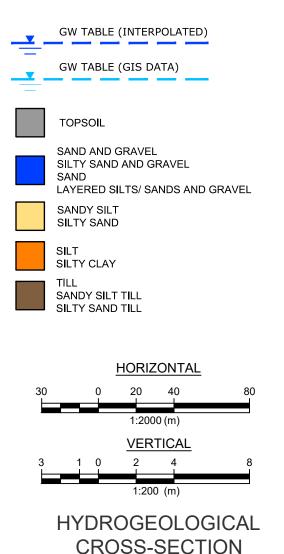
SECTION D - D' (2 OF 2)

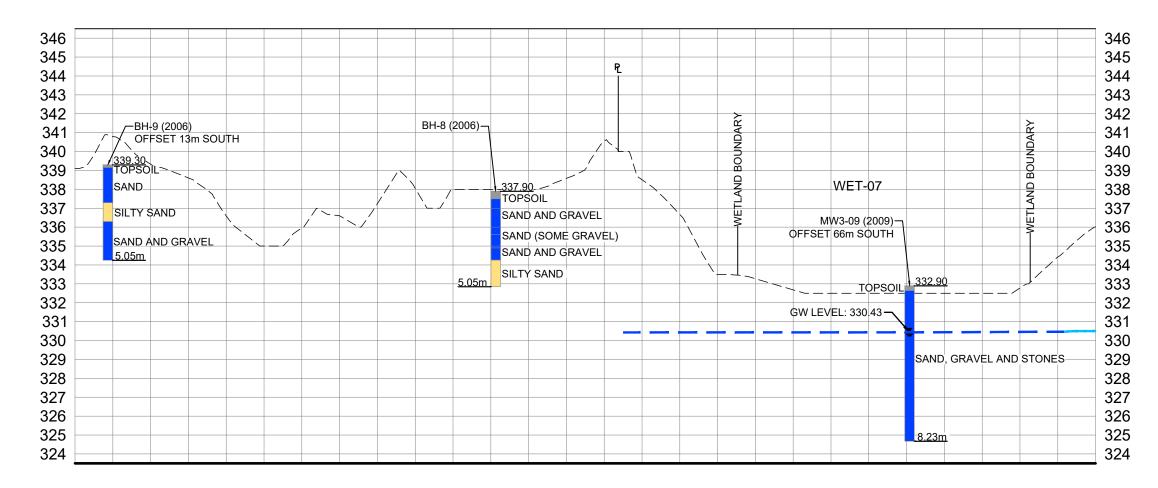
PROJECT: 121123 SOUTH GATE BUSINESS PARK HYDROGEOLOGICAL STUDY

CITY OF GUELPH

LEGEND:

D'

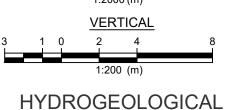



Figure No. 8d

D-D'

Ε

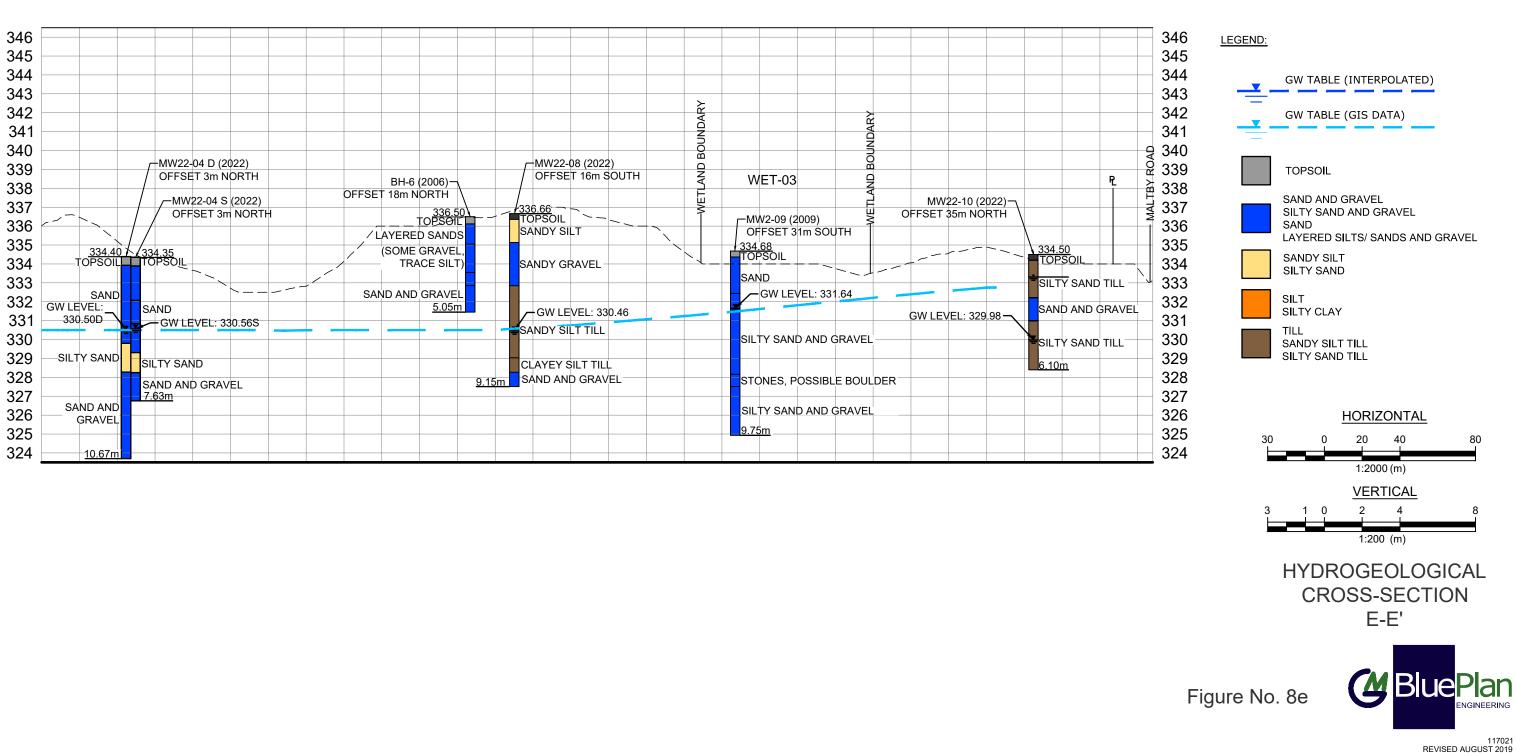
SECTION E - E' (1 OF 2)



PROJECT: 121123 SOUTH GATE BUSINESS PARK HYDROGEOLOGICAL STUDY

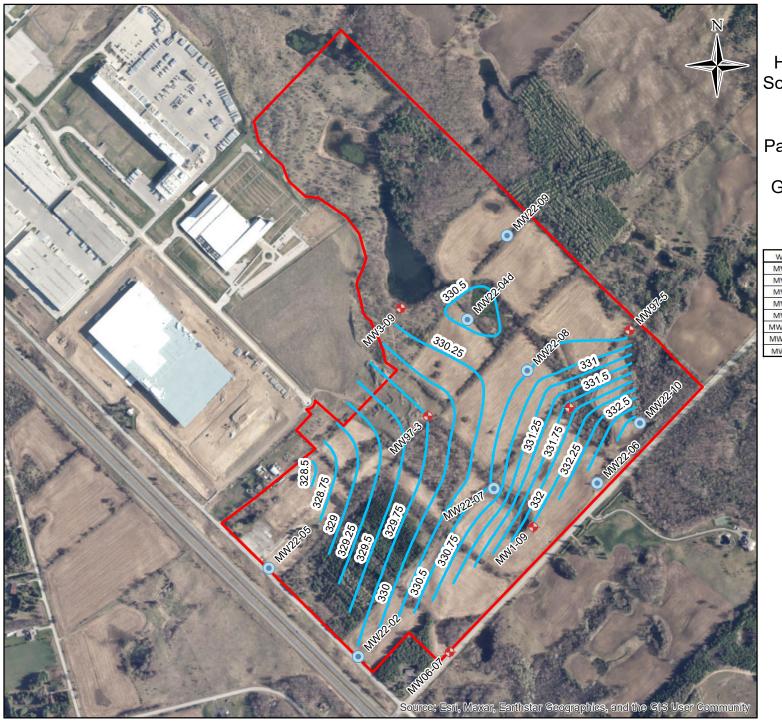
CITY OF GUELPH

LEGEND:



HYDROGEOLOGICAL CROSS-SECTION E-E'

Figure No. 8e


SECTION E - E' (2 OF 2)

PROJECT: 121123 SOUTH GATE BUSINESS PARK HYDROGEOLOGICAL STUDY

CITY OF GUELPH

Parts of Lot 13,14 & 15, Concession 7 Geo. Twp. of Puslinch

Well ID	GWL (masl)	Well ID	GWL (masl)
MW1-09	332.06	MW22-04D	330.5
MW2-09	331.64	MW22-04S	330.56
MW3-09	330.43	MW22-05	<330.814
MW97-3	329.75	MW22-06	<330.752
MW97-5	330.33	MW22-07	330.54
MW22-01D	328.35	MW22-08	330.46
MW22-01S	332.71	MW22-09	330.45
MW22-02	329.8	MW22-10	332.99

Historical Investigation Points (Existing) Monitoring Wells (2022) GW Contours (2022-06-01) Site Boundary Scale: 1: 9,000 October 2022 Figure 9: Interpreted Groundwater Level Contours

TABLES

MECP Well ID	Lot	Conc.	Easting	Northing	Township	Well Use	Bedrock/ Overburden	Depth to Bedrock (m)	Total Depth of Well (m)	Static Water Level (m)	Year Drilled	Notes
		-	505040	404 44 00			/ithin Site	1	00.4	45.0		
6702499	14	7	565349	4814138	PUSLINCH TOWNSHIP	Domestic	Overburden	~	20.4	15.3	1967-09-01	Appears to be abandoned as
6703865	14	7	565314	4814173	PUSLINCH TOWNSHIP	Domestic	Bedrock	42.7	50.3	21.4	1970-10-28	per MECP Well Record ID: 7149057
6708738	15	7	565623	4814068	PUSLINCH TOWNSHIP	Commerical	Overburden	~	22.9	15.6	1986-11-18	The well is acutally located on the property 519 Maltyby Road according to record
7127705	15	7	565879	4814180	PUSLINCH TOWNSHIP	Monitoring	Overburden	~	9.0	~	2009-07-13	Monitoring well installed by Banks Groundwater Engineering Limited
7127705	15	7	565967	4814452	PUSLINCH TOWNSHIP	Monitoring	Overburden	~	9.0	~	2009-07-13	Monitoring well installed by Banks Groundwater Engineering Limited
7127705	15	7	565585	4814692	PUSLINCH TOWNSHIP	Monitoring	Overburden	~	9.0	~	2009-07-13	Monitoring well installed by Banks Groundwater Engineering Limited
7149057	14	7	565268	4814239	PUSLINCH TOWNSHIP	Abandoned	Bedrock	~	51.9	~	2010-06-15	Well has been abandoned according to record
						Wells Withir	500 m of Site					
6702371	21	4	565016	4814062	PUSLINCH TOWNSHIP	Livestock	Bedrock	38.1	70.1	18.3	1962-02-06	
6702496	13	7	564955	4814418	PUSLINCH TOWNSHIP	Livestock	Bedrock	38.1	39.0	15.3	1957-10-22	
6702498	14	7	565244	4814288	PUSLINCH TOWNSHIP	Livestock	Bedrock	41.8	46.3	21.4	1959-01-26	
6703150	15	7	566514	4814783	PUSLINCH TOWNSHIP	Domestic	Overburden	~	19.8	9.2	1968-04-27	
6703187	20	4	564704	4814103	PUSLINCH TOWNSHIP	Domestic	Bedrock	42.7	57.9	21.0	1968-07-31	
6703384	15 15	7	566564 566424	4814803 4814763	PUSLINCH TOWNSHIP PUSLINCH TOWNSHIP	Domestic Domestic	Overburden Overburden	~	41.1 16.2	18.3 7.6	1969-06-07	
6703848 6704466	15	7	566674	4814703	PUSLINCH TOWNSHIP	Domestic	Bedrock	~ 34.2	35.1	11.6	1970-07-25 1972-09-14	
6706156	16	7	565814	4813543	PUSLINCH TOWNSHIP	Domestic	Bedrock	35.7	51.8	11.3	1976-08-09	
6707737	22	3	565454	4813843	PUSLINCH TOWNSHIP	Domestic	Bedrock	38.7	47.9	22.3	1982-11-13	
6707995	16	7	566454	4814523	PUSLINCH TOWNSHIP	Domestic	Overburden	~	18.3	9.2	1984-11-15	
6708329	14	7	565073	4814321	PUSLINCH TOWNSHIP	Domestic	Overburden	~	35.4	16.8	1985-09-18	
6711246	16	7	566460	4815039	PUSLINCH TOWNSHIP	Domestic	Overburden	~	19.2	5.2	1993-06-30	
6713164	14	7	565893	4814939	PUSLINCH TOWNSHIP	Domestic	Bedrock	29	61.9	25.0	1999-10-07	
6713680	21	3	565175	4813768	PUSLINCH TOWNSHIP	Domestic	Bedrock	36.9	42.7	14.9	2001-05-16	
6714518	16	7	566448	4814361	PUSLINCH TOWNSHIP	Domestic	Bedrock	33.6	47.2	18.9	2003-07-10	
6715030	12 12	7	565097 565097	4815155 4815155	PUSLINCH TOWNSHIP PUSLINCH TOWNSHIP	Not Used Not Used	Bedrock ~	27.4	27.9	~	2007-02-09	
6715032 7041087	~	~	565683	4813871	GUELPH CITY	Monitoring	~ Bedrock	~ 34.5	~ 99.9	~ ~	2004-08-13	Monitoring Well MW06-07 (BH-A)
7041088	~	~	565683	4813871	GUELPH CITY	Monitoring	Bedrock	34.8	64.0	~	2007-03-27	Monitoring Well MW06-07 (BH - B)
7041089	~	~	565683	4813871	GUELPH CITY	Monitoring	Bedrock	34.8	39.6	~	2007-03-27	Monitoring Well MW06-07 (BH-C)
7041090	~	~	565683 565240	4813871 4814982	GUELPH CITY GUELPH CITY	Monitoring Not Used	Overburden Bedrock	~ 27.4	19.8 27.9	~	2007-03-27	Monitoring Well MW06-07 (BH-D)
7043036 7044324	~ 13	~ 7	565252	4814982	PUSLINCH TOWNSHIP	Not Used	Bedrock	27.4	27.9	~ ~	2007-02-09 2007-05-17	
7044324	13	7	565331	4814997	PUSLINCH TOWNSHIP	Not Used	Bedrock	26.8	28.6	~	2007-05-17	
7118829	13	7	564932	4814614	PUSLINCH TOWNSHIP	Monitoring	Overburden	~	9.4	~	2008-02-20	
7118829	13	7	564812	4814728	PUSLINCH TOWNSHIP	Monitoring	Overburden	~	7.8	~	2008-02-18	
7118829	13	7	564812	4814728	PUSLINCH TOWNSHIP	Monitoring	Overburden	2	9.7	~	2008-02-18	
7118829	13	7	564812	4814728	PUSLINCH TOWNSHIP	Monitoring	Overburden	~	10.0	~	2008-02-18	
7120997	~	~	565034 564406	4814928 4815503	GUELPH CITY GUELPH CITY	Industrial Municipal	Bedrock Bedrock	34.2 37.8	88.7 102.1	~	2008-08-01	Record indicates that this was a test hole and not used for
7121100 7191239	~	~	565321	4813936	PUSLINCH TOWNSHIP	Abandoned			16.2	~	2008-06-16 2012-10-25	water supply.
7191239	~	~	566124	4813930	PUSLINCH TOWNSHIP	Unknown	~	~	~	~	2012-10-25	
7274660	16	7	566218	4813835	PUSLINCH TOWNSHIP	Unknown	~	~	~	~	2013-02-13	
7278485	~	7	565479	4815512	PUSLINCH TOWNSHIP	Monitoring	Overburden	~	35.4	17.2	2016-08-24	
7285179	~	~	565767	4815319	PUSLINCH TOWNSHIP	Monitoring	Overburden	~	12.2	~	2017-03-28	
7285182	~	~	566050	4815143	PUSLINCH TOWNSHIP	Monitoring	Overburden	~	17.4	~	2017-03-29	
7287747	16	7	566385	4814157	PUSLINCH TOWNSHIP GUELPH CITY	Domestic	Bedrock	38.4	39.6	9.8	2016-05-24	Screen/Open hole within bedrock
7297875 7316404	15	7~	566284 565091	4814845 4814312	GUELPH CITY GUELPH CITY	Monitoring Monitoring	Overburden Overburden	~	10.7 10.7	~ 9.5	2017-03-20 2018-07-19	
7316404	~	~	565872	4814312 4815289	GUELPH CITY GUELPH CITY	Monitoring	Overburden	~	10.7	9.5	2018-07-19 2018-10-09	
7323504	~	~	565872	4815288	GUELPH CITY	Monitoring	Overburden	~	4.6	~	2018-10-09	
7323505	~	~	565872	4815288	GUELPH CITY	Monitoring	Overburden	~	4.6	~	2018-10-09	
7323508	~	~	566023	4815321	GUELPH CITY	Monitoring	Overburden	~	15.3	~	2018-10-10	
7323509	~	~	566021	4815319	GUELPH CITY	Monitoring	Overburden	~	6.1	~	2018-10-10	
7331308	13	7	565854	4815540	PUSLINCH TOWNSHIP	Abandoned	~	~	61	~	2019-04-29	
7359713	~	~	565316	4815759	PUSLINCH TOWNSHIP	Monitoring	Overburden	~	16.5	15.3	2020-04-27	

~ - indicates data not included on record.

WETLAND	ELC	Hydrological Characteristics (Lee, et al., 1998)
WET-01	SWD3-2	-seasonal flooding duration is short, substrate aeration by early to mid-summer
	SWT2-5	-seasonal flooding duration is short, substrate aerated by early to mid-summer
WET-02	MAM2-2	-variable flooding regimes, water depth <2 m; soils flooded in spring, moist to dry by summer.
WET-03	SWD4-1	-commonly found on floodplains; flooding duration is short, substrate aerated by early to mid-summer
WET-04	SWD3-3	-seasonal flooding duration is short, substrate aerated by early to mid-summer
WET-05	MAM2-2	-variable flooding regimes, water depth <2 m; soils flooded in spring, moist to dry by summer.
	MAM2-2	-variable flooding regimes, water depth <2 m; soils flooded in spring, moist to dry by summer.
WET-06	SWT2-5	-seasonal flooding duration is short, substrate aerated by early to mid-summer
	MAS3-10	-water up to 2 m deep, standing or flowing water for much or all of growing season.
	MAM2-2	-variable flooding regimes, water depth <2 m; soils flooded in spring, moist to dry by summer.
WET-07	SWT2-2	-seasonal flooding duration is short, substrate aerated by early to mid-summer
	MAS3-2	-water up to 2 m deep, standing or flowing water for much or all of growing season.
WET-08	MAM2-2	-variable flooding regimes, water depth <2 m; soils flooded in spring, moist to dry by summer.
WET-09	MAM2-2	-variable flooding regimes, water depth <2 m; soils flooded in spring, moist to dry by summer.
WET-10*	MAM2-2	-variable flooding regimes, water depth <2 m; soils flooded in spring, moist to dry by summer.
WET-11	SWT2-4	-flooding duration is short, substrate aeration by early to mid-summer
WET-12	MAM2-2	-variable flooding regimes, water depth <2 m; soils flooded in spring, moist to dry by summer.
WET-13	MAM2-2	-variable flooding regimes, water depth <2 m; soils flooded in spring, moist to dry by summer.

* Indicates wetland has been identified as being eligible for removal. See discussion in Section 2.7.6.

Date	Investigative Activities Completed
29-Mar-22	Located existing monitoring wells: MW1-09, MW2-09, MW3-09, MW97-3, and MW97-5. Collected manual groundwater level measurements.
6-Apr-22	Installed dataloggers, collected manual water levels, and collected water quality samples at existing monitoring wells.
12-Apr-22	Installed six piezometers (PZ-1 to PZ-06) in wetlands WET-01 to WET-04, WET-06 and WET-07. Piezometers at WET-01 and WET-06 were installed as nests.
18-Apr-22	Collected manual measurements at all piezometers.
18-Apr-22	Began the drilling of 11 new monitoring wells as described in Section 3.1.
12-May-22	Installed dataloggers and collected manual water measurements at all the new monitoring wells and piezometers.
21-Jun-22	Hand-delivered well survey and groundwater monitoring program invitation letters to nearby residences within 500 m of Site.
2-Aug-22	Collected manual water level measurements and downloaded logger data at all investigative locations.
	Installed new piezometer nests at wetlands WET-05 and WET-08.
5-Sep-22	Installed deep piezometers to create a nest at wetlands WET-02, WET-03.
	Installed a deep piezometer at lower elevation within WET-01.
22 Nov 22	Collected manual water level measurements and downloaded logger data at all investigative locations.
22-Nov-22	Attempted to collect surface water samples from wetlands on-site, but wetlands were dry at the time of visit
1-Dec-22	Visited residences 4646 Sideroad 20, 519 Maltby Road, and 192 Maltby Road to collect baseline water quality samples.
5 Dec 22	Visited residences 104 and 110 Maltby Road to collect baseline water quality samples.
5-Dec-22	Attempted to collect surface water samples from wetlands on-site, but wetlands were dry at the time of visit
6-Jan-23	Collection of baseline samples from surface water features (WET-02, WET-06)
2-Feb-23	Collected manual water level measurements and downloaded logger data at all investigative locations (i.e., piezometers and monitoring wells).

Table 4a: Monitoring Well Details and Water Level Observations 2022 Monitoring Wells

]	DATE:	: 2022-05-12		2022-	06-01	2022-	08-02	2022-	11-22	2023-02-02	
			<u>Scre</u>	een	<u>Water</u>	Water Level		Water Level		Water Level		Water Level		· Level
Well ID	Ground Elev.	TOC Elev.	Top Elev.	<u>Length</u>	<u>Depth</u>	<u>Elev.</u>	<u>Depth</u>	<u>Elev.</u>	<u>Depth</u>	<u>Elev.</u>	<u>Depth</u>	<u>Elev.</u>	<u>Depth</u>	Elev.
<u>()</u>	<u>(masl)</u>	<u>(masl)</u>	<u>(masl)</u>	<u>(m)</u>	<u>(mbTOC)</u>	<u>(masl)</u>								
MW22-01D	341.461	342.504	329.261	3.05	14.16	328.344	14.154	328.35	14.444	328.06	15.035	327.469	15.265	327.239
MW22-01S	341.623	342.561	334.763	3.05	9.836	332.725	9.851	332.71	9.9	332.661	10.023	332.538	9.798	332.763
MW22-02	338.73	339.644	331.110	3.05	9.766	329.878	9.844	329.8	10.255	329.389	10.816	328.828	11.071	328.573
MW22-04D	334.395	335.271	326.775	3.05	4.775	330.496	4.771	330.5	5.337	329.934	6.187	329.084	6.488	328.783
MW22-04S	334.348	335.258	329.768	3.05	4.701	330.557	4.698	330.56	5.175	330.083	6.025	329.233	6.237	329.021
MW22-05	341.484	342.397	333.864	3.05	DRY	<330.814	DRY	<330.814	DRY	<330.814	DRY	<330.815	DRY	<330.815
MW22-06	344.482	345.292	333.802	3.05	DRY	<330.752	DRY	<330.752	DRY	<330.752	DRY	<330.753	DRY	<330.753
MW22-07	333.713	334.711	329.133	3.05	4.031	330.68	4.171	330.54	5.003	329.708	5.827	328.884	6.073	328.638
MW22-08	336.659	337.659	330.559	3.05	7.21	330.449	7.199	330.46	7.841	329.818	8.695	328.964	8.987	328.672
MW22-09	338.807	339.748	332.706	3.05	9.326	330.422	9.298	330.45	9.766	329.982	9.93	329.818	9.93	329.818
MW22-10	334.496	335.41	331.446	3.05	2.110	333.3	2.42	332.99	3.585	331.825	4.92	330.49	3.622	331.788

mbTOC - *metres below top of casing of well. masl* - *metres above Sea Level*

NM - not measured

Elev. - Elevation

Table 4b: Monitoring Well Details and Water Level Observations Pre-Existing Monitoring Wells

		_		DATE:	DATE: 2022-05-30			2022-06-01 2		2022-08-04		2022-11-22		02-02
			Scr	<u>een</u>	een <u>Water Level</u>		Water Level		Water Level		Water Level		<u>Water Level</u>	
Well ID	Ground Elev.	TOC Elev.	Top Elev.	<u>Length</u>	<u>Depth</u>	Elev.	<u>Depth</u>	Elev.	<u>Depth</u>	<u>Elev.</u>	<u>Depth</u>	Elev.	<u>Depth</u>	Elev.
<u>()</u>	<u>(masl)</u>	<u>(masl)</u>	<u>(masl)</u>	<u>(m)</u>	<u>(mbTOC)</u>	<u>(masl)</u>	(mbTOC)	<u>(masl)</u>	(mbTOC)	<u>(masl)</u>	<u>(mbTOC)</u>	<u>(masl)</u>	(mbTOC)	<u>(masl)</u>
MW1-09	334.24	335.23	328.1	3.0	3.16	332.07	3.17	332.06	4.03	331.2	5.07	330.16	4.768	330.462
MW2-09	334.68	335.69	329.2	3.0	4.035	331.655	4.05	331.64	5.001	330.689	5.765	329.925	5.816	329.874
MW3-09	332.9	333.92	328.6	3.0	3.5	330.42	3.49	330.43	3.947	329.973	4.745	329.175	5.005	328.915
MW97-3	340.1	340.89	328.6	3.0	11.21	329.68	11.14	329.75	11.49	329.4	12.29	328.6	12.583	328.307
MW97-5	336.4	337.19	327.4	3.0	6.885	330.305	6.86	330.33	7.344	329.846	8.225	328.965	8.538	328.652

mbTOC - metres below top of casing of well. masl - metres above Sea Level NM - not measured Elev. - Elevation

				DATE:	2022-04-18		2022-	05-12	2022-	08-02	2022-	11-22	2023-02-02	
			<u>Scre</u>	een	<u>Water</u>	Level	Water	Level	<u>Water</u>	· Level	<u>Water</u>	r Level	<u>Wate</u>	r Level
Well ID	Ground Elev.	TOC Elev.	<u>Top Elev.</u>	<u>Length</u>	<u>Depth</u>	<u>Elev.</u>	<u>Depth</u>	<u>Elev.</u>	<u>Depth</u>	<u>Elev.</u>	<u>Depth</u>	<u>Elev.</u>	<u>Depth</u>	<u>Elev.</u>
<u>()</u>	<u>(masl)</u>	<u>(masl)</u>	<u>(masl)</u>	<u>(m)</u>	<u>(mbTOC)</u>	<u>(masl)</u>	(mbTOC)	<u>(masl)</u>	(mbTOC)	<u>(masl)</u>	(mbTOC)	<u>(masl)</u>	(mbTOC)	<u>(masl)</u>
PZ-01	333.78	334.904	333.379	0.50	1.61	333.294	1.617	333.287	DRY	<333.08	DRY	<333.09	DRY	<333.09
PZ-02S	333.74	334.964	333.439	0.60	1.62	333.344	1.731	333.233	DRY	<334.54	DRY	<334.55	DRY	<334.55
PZ-02D	333.74	334.795	333.270	0.80	~	~	~	~	~	~	DRY	<331.74	DRY	<331.74
PZ-03S	334.09	335.258	333.733	0.51	1.463	333.795	1.58	333.678	DRY	<333.33	DRY	<333.34	DRY	<333.34
PZ-03D	334.012	335.087	333.562	1.80	~	~	~	~	~	~	3.03	332.06	2.816	332.271
PZ-04S-R	335.93	336.805	335.280	1.40	DRY	<334.28	DRY	<334.28	DRY	<334.28	DRY	<334.29	DRY	<334.29
PZ-04D-R	334.557	335.692	334.167	1.29	~	~	~	~	~	~	DRY	<332.967	DRY	<332.967
PZ-05S	331.518	332.713	331.188	0.43	1.438	331.275	1.509	331.204	DRY	<330.89	DRY	<330.89	DRY	<330.89
PZ-05D	331.539	332.534	331.009	1.08	1.264	331.27	1.35	331.184	2.01	330.524	2.105	330.43	2.8	<329.734
PZ-06	330.917	331.942	330.417	0.70	1.575	330.367	~	2	1.951	329.991	DRY	<329.839	1.99	329.952
PZ-07S	334.041	335.106	333.581	0.71	~	~	~	~	~	~	DRY	<333.081	DRY	<333.081
PZ-07D	334.018	335.168	333.643	1.70	~	~	~	~	~	2	DRY	<332.118	DRY	<332.118
PZ-08S	331.315	332.34	330.815	0.70	~	~	2	~	~	~	DRY	<330.315	DRY	<330.315
PZ-08D	330.972	332.297	330.772	1.75	~	~	~	~	~	~	DRY	<329.022	2.932	329.365

~ indicates not measured at the time

mbTOC - metres below top of casing of well.

masl - metres above Sea Level

NM - not measured

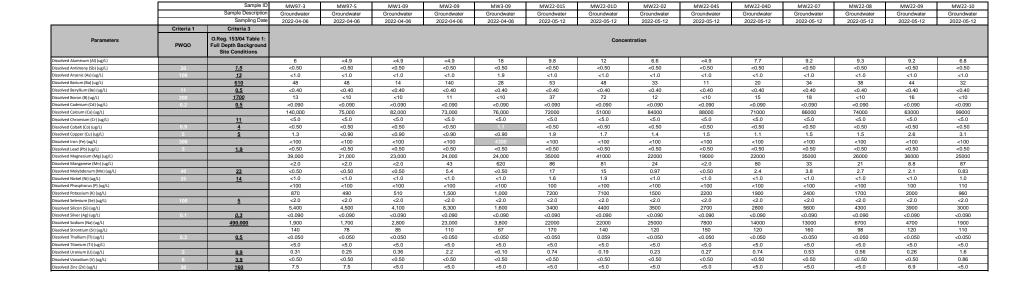
Elev. - Elevation

		Sample ID	MW97-3	MW97-5	MW1-09	MW2-09	MW3-09	MW22-01S	MW22-01D	MW22-02	MW22-04S	MW22-04D	MW22-07	MW22-08	MW22-09	MW22-10
		Sample Description	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
		Sampling Date	2022-04-06	2022-04-06	2022-04-06	2022-04-06	2022-04-06	2022-05-12	2022-05-12	2022-05-12	2022-05-12	2022-05-12	2022-05-12	2022-05-12	2022-05-12	2022-05-12
	Criteria 1	Criteria 3														
Parameters	PWQO	O.Reg. 153/04 Table 1: Full Depth Background Site Conditions		Concentration												
Bicarb. Alkalinity (calc. as CaCO3) (mg/L)			440	230	240	290	280	280	230	280	270	280	320	240	270	280
Calculated TDS (mg/L)			540	280	330	350	290	400	360	380	330	310	400	330	310	390
Carb. Alkalinity (calc. as CaCO3) (mg/L)			2.3	2.2	2.0	3.1	1.6	3.3	3.4	2.4	3	3.2	2.7	2.3	3.2	2.5
Hardness (CaCO3) (mg/L)			520	270	300	280	290	330	300	300	300	270	360	290	310	350
Conductivity (umho/cm)			870	490	570	590	530	730	670	680	580	550	700	570	580	680
Orthophosphate (P) (mg/L)			<0.050	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.050	<0.050	<0.010	<0.010
рН	6.5:8.5		7.73	8.01	7.95	8.05	7.77	8.1	8.19	7.95	8.07	8.08	7.96	8.01	8.11	7.99
Dissolved Sulphate (SO4) (mg/L)			23.0	9.1	15.0	30.0	7.1	9.7	12	8.6	8.4	8.1	9	8.1	5.5	26
Alkalinity (Total as CaCO3) (mg/L)			440	230	250	300	290	280	240	290	270	280	320	240	270	280
Dissolved Chloride (Cl-) (mg/L)		790	3.8	6.1	9.7	5.1	1.9	63	69	25	6.7	13	17	12	25	8.9
Nitrite (N) (mg/L)			<0.010	<0.010	<0.010	0.016	<0.010	0.041	0.111	0.02	0.01	0.011	0.063	0.015	<0.010	0.048
Nitrate (N) (mg/L)			10.10	5.13	8.52	<0.10	<0.10	2.49	0.55	8.62	5.96	1.78	8.31	11	0.88	12.5
Nitrate + Nitrite (N) (mg/L)			10.10	5.13	8.52	<0.10	<0.10	2.54	0.66	8.64	5.97	1.79	8.37	11	0.88	12.5
Total Ammonia-N (mg/L)			<0.050	<0.050	<0.050	0.06	0.07	0.19	0.32	0.096	0.15	0.13	0.11	0.13	0.059	0.095
Dissolved Organic Carbon (mg/L)			1.60	0.46	0.93	1.40	1.60	1.5	1.2	0.8	1.2	2.2	1.3	0.73	0.59	1.6

 Notes:

 1. Criteria are from the Ontario Provincial Water Quality Objectives (Criteria 1), and the O.Reg.153/04: Table 1: Full Depth Background Site Conditions (Criteria 2). Criteria are indicated by:

 White Text for Criteria 1, <u>Underlined</u> for Criteria 2.


 2. Criteria and concentrations are given in units consistent with the units listed for the associated parameter.

 3. Concentrations with bold, Italic, or underlined text in shaded cells exceed the corresponding criteria.

 4. --- represents sample parameters that were not analyzed; ~ = No value specified.

 5. BV Labs Job Number: C291734, C2D0995

	Sample ID	WET-02	WET-06		
	Sample Description	Surface Water	Surface Water		
	Sampling Date	2023-01-06	2023-01-06		
	Criteria 1				
Parameters	PWQO	Concentration			
Bicarb. Alkalinity (calc. as CaCO3) (mg/L)		87	30		
Calculated TDS (mg/L)		160	110		
Carb. Alkalinity (calc. as CaCO3) (mg/L)		<1.0	<1.0		
Hardness (CaCO3) (mg/L)		120	73		
Conductivity (umho/cm)		260	180		
Orthophosphate (P) (mg/L)		1.3	0.13		
рН	6.5:8.5	7.38	6.98		
Dissolved Sulphate (SO4) (mg/L)		36	38		
Alkalinity (Total as CaCO3) (mg/L)		87	30		
Dissolved Chloride (Cl-) (mg/L)		5.0	8.3		
Nitrite (N) (mg/L)		0.07	0.017		
Nitrate (N) (mg/L)		0.59	0.62		
Nitrate + Nitrite (N) (mg/L)		0.66	0.64		
Total Ammonia-N (mg/L)		0.33	0.34		
Dissolved Organic Carbon (mg/L)		13	8.90		

Notes:

1. Criteria are from the Ontario Provincial Water Quality Objectives Criteria are indicated by:

White Text for Criteria 1

- 2. Criteria and concentrations are given in units consistent with the units listed for the associated parameter.
- 3. Concentrations with shaded cells and white text exceed the corresponding criteria.
- 4. ---- represents sample parameters that were not analyzed; ~ = No value specified.
- 5. BV Labs Job Number: C307788

	Sample ID	WET-02	WET-06
	Sample Description	Surface Water	Surface Water
	Sampling Date	2023-01-06	2023-01-06
	Criteria 1		
Parameters	PWQO	Concer	ntration
Dissolved Aluminum (Al) (ug/L)		10	11
Dissolved Antimony (Sb) (ug/L)	20	<0.50	<0.50
Dissolved Arsenic (As) (ug/L)	100	1.2	<1.0
Dissolved Barium (Ba) (ug/L)		13	11
Dissolved Beryllium (Be) (ug/L)	11	<0.40	<0.40
Dissolved Boron (B) (ug/L)	200	14	30
Dissolved Cadmium (Cd) (ug/L)	0.2	<0.090	<0.090
Dissolved Calcium (Ca) (ug/L)		31,000	18,000
Dissolved Chromium (Cr) (ug/L)		<5.0	<5.0
Dissolved Cobalt (Co) (ug/L)	0.9	<0.50	<0.50
Dissolved Copper (Cu) (ug/L)	5	4.5	2.1
Dissolved Iron (Fe) (ug/L)	300	<100	<100
Dissolved Lead (Pb) (ug/L)	5	<0.50	<0.50
Dissolved Magnesium (Mg) (ug/L)		10,000	6,600
Dissolved Manganese (Mn) (ug/L)		14	12
Dissolved Molybdenum (Mo) (ug/L)	40	2	<0.50
Dissolved Nickel (Ni) (ug/L)	25	<1.0	<1.0
Dissolved Phosphorus (P) (ug/L)		1400	240
Dissolved Potassium (K) (ug/L)		9,300	6,600
Dissolved Selenium (Se) (ug/L)	100	<2.0	<2.0
Dissolved Silicon (Si) (ug/L)		3,400	1,600
Dissolved Silver (Ag) (ug/L)	0.1	<0.090	<0.090
Dissolved Sodium (Na) (ug/L)		1,600	2,400
Dissolved Strontium (Sr) (ug/L)		33	22
Dissolved Thallium (TI) (ug/L)	0.3	<0.050	<0.050
Dissolved Titanium (Ti) (ug/L)		<5.0	<5.0
Dissolved Uranium (U) (ug/L)	5	<0.10	<0.10
Dissolved Vanadium (V) (ug/L)	6	<0.50	<0.50
Dissolved Zinc (Zn) (ug/L)	30	<5.0	<5.0

1. Criteria are from the Ontario Provincial Water Quality Objectives

Criteria are indicated by:

White Text for Criteria 1

- 2. Criteria and concentrations are given in units consistent with the units listed for the associated parameter.
- 3. Concentrations with shaded cells and white text exceed the corresponding criteria.
- 4. ---- represents sample parameters that were not analyzed; ~ = No value specified.
- 5. BV Labs Job Number: C307788

		Residence	104 Maltby Rd.			
	Sample	e Description/Location	Basement Faucet / Raw Water			
	La	aboratory Job Number	C2Z6673			
		Sampling Date	2022-12-05			
Parameters	Criteria 1	Criteria 2	Concentration			
Falameters	ODWS - MAC	ODWS - A/O	Concentration			
Hardness (CaCO3) (mg/L)			350			
Total Ammonia-N (mg/L)			<0.050			
Conductivity (µS/cm)			840			
Dissolved Organic Cabon (mg/L)			0.81			
рН			8			
Nitrite (N) (mg/L)	1	1				
Nitrate (N) (mg/L)	10		5.9			
Nitrate + Nitrite (N) (mg/L)	10		5.9			
Total Suspended Solids (mg/L)		500	<10			
Turbidity (NTU)			<0.1			
Alkalinity (Total as CaCO3) (mg/L)			300			
Total Calcium (Ca) (µg/L)			94,000			
Total Iron (Fe) (µg/L)		300	<100			
Total Magnesium (Mg) (µg/L)			27,000			
Total Manganese (Mn) (µg/L)		<2.0				
Total Sodium (Na) (µg/L)						
Microbiology: Fecal Coliforms (CFU/100 mL)						
Microbiology: Total Coliforms (CFU/100 mL)	0		0			
Escherichia Coli (CFU/100 mL)	0		0			

1. Criteria are from the *Ontario Drinking Water Standards Maximum Acceptable Concentration* (Criteria 1) and *Aesthetic Objectives* (Criteria 2) . Criteria are indicated by: **White Text** for Criteria 1, *Bold Italics* for Criteria 2

2. Criteria and concentrations are given in units consistent with the units listed for the associated parameter.

3. Concentrations with bold, italic, or underlined text in shaded cells exceed the corresponding criteria.

4. Screened well intervals presented are approximate (where available).

5. ---- represents sample parameters that were not analyzed; ~ = No value specified.

6. CFU = Colony-Forming Units

7. Water sampled on December 5, 2022 collected from basement faucet pre-treatment

		Residence	110 Maltby Rd.			
	Sample	e Description/Location	Basement Faucet / Raw Water			
	La	aboratory Job Number	C2Z6673			
		Sampling Date	2022-12-05			
Parameters	Criteria 1	Criteria 2	Concentration			
Farameters	ODWS - MAC	ODWS - A/O	Concentration			
Hardness (CaCO3) (mg/L)			250			
Total Ammonia-N (mg/L)			0.2			
Conductivity (µS/cm)			480			
Dissolved Organic Cabon (mg/L)			0.79			
рН			8.13			
Nitrite (N) (mg/L)	1					
Nitrate (N) (mg/L)	10		<0.10			
Nitrate + Nitrite (N) (mg/L)	10		<0.10			
Total Suspended Solids (mg/L)		500	<10			
Turbidity (NTU)			2.1			
Alkalinity (Total as CaCO3) (mg/L)			230			
Total Calcium (Ca) (µg/L)			56,000			
Total Iron (Fe) (µg/L)		300	260			
Total Magnesium (Mg) (µg/L)			28,000			
Total Manganese (Mn) (µg/L)		50	29			
Total Sodium (Na) (µg/L)		200,000	7,200			
Microbiology: Fecal Coliforms (CFU/100 mL)			0			
Microbiology: Total Coliforms (CFU/100 mL)	0		0			
Escherichia Coli (CFU/100 mL)	0		0			

1. Criteria are from the *Ontario Drinking Water Standards Maximum Acceptable Concentration* (Criteria 1) and *Aesthetic Objectives* (Criteria 2) . Criteria are indicated by: **White Text** for Criteria 1, *Bold Italics* for Criteria 2

2. Criteria and concentrations are given in units consistent with the units listed for the associated parameter.

3. Concentrations with bold, italic, or underlined text in shaded cells exceed the corresponding criteria.

4. Screened well intervals presented are approximate (where available).

5. ---- represents sample parameters that were not analyzed; ~ = No value specified.

6. CFU = Colony-Forming Units

7. Water sampled on December 5, 2022 collected from basement faucet pre-treatment

		Residence	192 Maltby Rd.
	Sample	Description/Location	Outdoor Spigot / Raw Water
	La	C2Z3556	
		2022-12-01	
Parameters	Criteria 1	Criteria 2	Concentration
Faiameters	ODWS - MAC	ODWS - A/O	Concentration
Hardness (CaCO3) (mg/L)			330
Total Ammonia-N (mg/L)			<0.050
Conductivity (µS/cm)			650
Dissolved Organic Cabon (mg/L)			0.58
рН			8.01
Nitrite (N) (mg/L)	1		0.01
Nitrate (N) (mg/L)	10		2.73
Nitrate + Nitrite (N) (mg/L)	10		2.74
Total Suspended Solids (mg/L)		500	<10
Turbidity (NTU)			0.3
Alkalinity (Total as CaCO3) (mg/L)			270
Total Calcium (Ca) (μg/L)			88,000
Total Iron (Fe) (μg/L)		300	<100
Total Magnesium (Mg) (µg/L)			28,000
Total Manganese (Mn) (µg/L)		50	<2.0
Total Sodium (Na) (µg/L)		200,000	10,000
Microbiology: Fecal Coliforms (CFU/100 mL)			0
Microbiology: Background (CFU/100 mL)			79
Microbiology: Total Coliforms (CFU/100 mL)	0		1
Escherichia Coli (CFU/100 mL)	0		0

1. Criteria are from the *Ontario Drinking Water Standards Maximum Acceptable Concentration* (Criteria 1) and *Aesthetic Objectives* (Criteria 2) . Criteria are indicated by: **White Text** for Criteria 1, *Bold Italics* for Criteria 2

2. Criteria and concentrations are given in units consistent with the units listed for the associated parameter.

3. Concentrations with bold, italic, or underlined text in shaded cells exceed the corresponding criteria.

4. Screened well intervals presented are approximate (where available).

- 5. ---- represents sample parameters that were not analyzed; ~ = No value specified.
- 6. CFU = Colony-Forming Units
- 7. Water sampled on December 1, 2022 collected from basement faucet pre-treatment

		Residence	519 Maltby Rd.			
	Sample	Description/Location	Basement Faucet / Raw Water			
	La	aboratory Job Number	C2Z3556			
		Sampling Date	2022-12-01			
Parameters	Criteria 1	Criteria 2	Concentration			
Falanieleis	ODWS - MAC	ODWS - A/O	Concentration			
Hardness (CaCO3) (mg/L)			330			
Total Ammonia-N (mg/L)			<0.050			
Conductivity (µS/cm)			610			
Dissolved Organic Cabon (mg/L)			0.78			
рН			7.94			
Nitrite (N) (mg/L)	1	1				
Nitrate (N) (mg/L)	10		4.58			
Nitrate + Nitrite (N) (mg/L)	10		4.59			
Total Suspended Solids (mg/L)		500	<10			
Turbidity (NTU)			0.3			
Alkalinity (Total as CaCO3) (mg/L)			280			
Total Calcium (Ca) (μg/L)			88,000			
Total Iron (Fe) (µg/L)		300	<100			
Total Magnesium (Mg) (µg/L)			27,000			
Total Manganese (Mn) (µg/L)		50	<2.0			
Total Sodium (Na) (μg/L)		200,000	6,000			
Microbiology: Fecal Coliforms (CFU/100 mL)			0			
Microbiology: Total Coliforms (CFU/100 mL)	0		0			
Escherichia Coli (CFU/100 mL)	0		0			

1. Criteria are from the *Ontario Drinking Water Standards Maximum Acceptable Concentration* (Criteria 1) and *Aesthetic Objectives* (Criteria 2). Criteria are indicated by: **White Text** for Criteria 1, *Bold Italics* for Criteria 2

2. Criteria and concentrations are given in units consistent with the units listed for the associated parameter.

3. Concentrations with bold, italic, or underlined text in shaded cells exceed the corresponding criteria.

4. Screened well intervals presented are approximate (where available).

5. ---- represents sample parameters that were not analyzed; ~ = No value specified.

6. CFU = Colony-Forming Units

7. Water sampled on December 1, 2022 collected from basement faucet pre-treatment

		Residence	519 Maltby Rd.			
	Sample	e Description/Location	Basement Faucet / Raw Water			
	La	aboratory Job Number	C2Z3556			
		Sampling Date	2022-12-01			
Parameters	Criteria 1	Criteria 2	Concentration			
i diameters	ODWS - MAC	ODWS - A/O	Concentration			
Hardness (CaCO3) (mg/L)			330			
Total Ammonia-N (mg/L)			<0.050			
Conductivity (µS/cm)			610			
Dissolved Organic Cabon (mg/L)			0.78			
рН			7.94			
Nitrite (N) (mg/L)	1	1				
Nitrate (N) (mg/L)	10		4.58			
Nitrate + Nitrite (N) (mg/L)	10		4.59			
Total Suspended Solids (mg/L)		500	<10			
Turbidity (NTU)			0.3			
Alkalinity (Total as CaCO3) (mg/L)			280			
Total Calcium (Ca) (µg/L)			88,000			
Total Iron (Fe) (µg/L)		300	<100			
Total Magnesium (Mg) (µg/L)			27,000			
Total Manganese (Mn) (µg/L)		50	<2.0			
Total Sodium (Na) (µg/L)		200,000	6,000			
Microbiology: Fecal Coliforms (CFU/100 mL)			0			
Microbiology: Total Coliforms (CFU/100 mL)	0		0			
Escherichia Coli (CFU/100 mL)	0		0			

1. Criteria are from the *Ontario Drinking Water Standards Maximum Acceptable Concentration* (Criteria 1) and *Aesthetic Objectives* (Criteria 2). Criteria are indicated by: **White Text** for Criteria 1, *Bold Italics* for Criteria 2

2. Criteria and concentrations are given in units consistent with the units listed for the associated parameter.

3. Concentrations with bold, italic, or underlined text in shaded cells exceed the corresponding criteria.

4. Screened well intervals presented are approximate (where available).

5. ---- represents sample parameters that were not analyzed; ~ = No value specified.

6. CFU = Colony-Forming Units

7. Water sampled on December 1, 2022 collected from basement faucet pre-treatment

		Residence	4646 Sideroad 20 N
	Sample	e Description/Location	Basement Faucet / Raw Water
	La	boratory Job Number	C2Z3556
		2022-12-01	
Parameters	Criteria 1	Criteria 2	Concentration
Farameters	ODWS - MAC	ODWS - A/O	Concentration
Hardness (CaCO3) (mg/L)			230
Total Ammonia-N (mg/L)			0.1
Conductivity (µS/cm)			430
Dissolved Organic Cabon (mg/L)			0.52
рН			8.12
Nitrite (N) (mg/L)	1		0.019
Nitrate (N) (mg/L)	10		<0.10
Nitrate + Nitrite (N) (mg/L)	10		<0.10
Total Suspended Solids (mg/L)		500	<10
Turbidity (NTU)			2.4
Alkalinity (Total as CaCO3) (mg/L)			210
Total Calcium (Ca) (μg/L)			46,000
Total Iron (Fe) (μg/L)		300	350
Total Magnesium (Mg) (µg/L)			27,000
Total Manganese (Mn) (µg/L)		50	8.5
Total Sodium (Na) (µg/L)		200,000	5,700
Microbiology: Fecal Coliforms (CFU/100 mL)			0
Microbiology: Total Coliforms (CFU/100 mL)	0		0
Escherichia Coli (CFU/100 mL)	0		0

1. Criteria are from the Ontario Drinking Water Standards Maximum Acceptable Concentration (Criteria 1) and Aesthetic Objectives (Criteria 2). Criteria are indicated by:

White Text for Criteria 1, *Bold Italics* for Criteria 2

2. Criteria and concentrations are given in units consistent with the units listed for the associated parameter.

3. Concentrations with bold, italic, or underlined text in shaded cells exceed the corresponding criteria.

4. Screened well intervals presented are approximate (where available).

5. ---- represents sample parameters that were not analyzed; ~ = No value specified.

6. CFU = Colony-Forming Units

7. Water sampled on December 1, 2022 collected from basement faucet pre-treatment

		Catchment Areas	WET-01	WET-02	WET-03 WET-05	WET-04 WET-11	WET-06 WET-07 WET-12	WET-08	WET-09	WET-10	WET-13	Other Areas - West of Wetland Corridor†	Other Areas - East of Wetland Corridor‡
	Precipitation	(mm/yr)	946	946	946	946	946	946	946	946	946	946	946
	Catchment Area	(ha)	1.25	8.48	7.38	2.78	18.02	2.48	4.02	0.84	2.72	19.24	5.91
Pre-Development Annual	Runoff	(mm/yr)	156	158	183	162	116	155	218	197	215	0	0
elopn ual	(Estimated)	(m³/yr)	1,949	13,394	13,536	4,494	20,976	3,847	8,758	1,661	5,839	0	0
Develog Annual	Recharge (Estimated)	(mm/yr)	245	244	198	215	272	232	160	197	155	396	373
Pre-I	Recharge (Estimated)	(m³/yr)	3,048	20,673	14,613	5,970	48,944	5,771	6,451	1,661	4,228	76,118	22,062
	Evapotranspiration	(mm/yr)	545	544	564	569	558	559	568	552	576	550	573
	(Estimated)	(m³/yr)	6,791	46,099	41,644	15,832	100,568	13,882	22,828	4,650	15,658	105,888	33,863
uo	Catchment Area	(ha)	1.59	6.76	7.38	2.78	17.99	2.40	4.02	0.78	2.72	21.17	5.91
Construction Jal	Runoff	(mm/yr)	156	152	184	162	115	155	183	191	215	0	0
onsti I	(Estimated)	(m³/yr)	2,477	10,248	13,542	4,492	20,727	3,717	7,362	1,491	5,839	0	0
ise 1 Co Annual.	Pacharga (Ectimated)	(mm/yr)	245	252	198	215	269	232	183	191	155	534	370
Phase 1 Annu	Recharge (Estimated)	(m³/yr)	3,892	17,046	14,611	5,972	48,363	5,575	7,362	1,491	4,229	113,050	21,880
After P	Evapotranspiration	(mm/yr)	545	542	564	570	562	559	580	564	576	412	576
Afi	(Estimated)	(m³/yr)	8,670	36,649	41,654	15,832	101,058	13,410	23,306	4,397	15,660	79,254	34,037

*Includes only those areas outside the wetland limits as established by NRSI and GRCA. Wetland areas themselves will not be altered by development and so changes to the water budget can be determined by estimating the changes to the external catchment areas.

** Due to closed depressions and requirement to retain runoff on-site for infiltration, runoff is set to zero.

For pre-development catchments 102, 104 and 112, evapotranspiration is calculated using a weighted average assuming that evapotranspiration over 75% of the catchment area is equal to the estimate of "Actual Evapotranspiration" (as per the usual Thornthwaite and Mather approach), whereas over 25% of the catchment it is equal to the midpoint between the estimated "Actual Evapotranspiration (AE)" and the estimated "Adjusted Potential Evapotranspiration (PE)". The remainder of the water balance then goes to recharge.

Catchments not developed by Phase 1 (i.e., 102P, 104P) and for catchments pre-graded at Phase 1 (i.e., 201, 205, 206, and part of 109P draining to an erosion and sediment control pond) are subject to the same procedure as the pre-development catchments.

For developed areas with infiltration galleries (e.g. 202, 203, 204 and 300-series) all computed runoff is assumed to be recharged because of the controlled discharge to subsurface structures which will inhibit evapotranspiration.

[†] Areas that do not drain to a wetland. Pre-Development Catchment 112; Post Development Catchments 109P (Portion Affected by Pre-Grade), 200-series, 300 series.

‡ Areas that do not drain to a wetland. Pre-Development Catchments 102 and 104; Post-Development Catchments 102P and 104P

				Pre-De	velopment Runc	off by Catchment	: (m³)				
Month	WET-01	WET-02	WET-03 WET-05	WET-04 WET-11	WET-06 WET-07 WET-12	WET-08	WET-09	WET-10	WET-13	Other Areas ⁺	TOTAL
January	57	392	352	112	564	105	220	48	134	0	1,985
February	28	196	176	56	282	53	110	24	67	0	992
March	14	98	92	29	146	27	57	12	35	0	511
April	236	1,617	1,713	574	2,612	481	1,116	204	759	0	9,311
May	633	4,340	4,619	1,548	7,046	1,295	3,013	549	2,053	0	25,096
June	316	2,170	2,309	774	3,523	648	1,506	275	1,027	0	12,548
July	158	1,085	1,155	387	1,761	324	753	137	513	0	6,274
August	79	543	577	194	881	162	377	69	257	0	3,137
September	40	271	289	97	440	81	188	34	128	0	1,569
October	47	328	144	48	335	40	94	21	64	0	1,122
November	227	1,569	1,407	450	2,257	421	882	191	535	0	7,940
December	114	785	704	225	1,129	210	441	96	267	0	3,970
TOTAL	1,949	13,394	13,536	4,494	20,976	3,847	8,758	1,661	5,839	0	74,456

[After Constru	uction of Phase 1	L Runoff by Catch	iment (m³)				
Month	WET-01	WET-02	WET-03 WET-05	WET-04 WET-11	WET-06 WET-07 WET-12	WET-08	WET-09	WET-10	WET-13	Other Areas ⁺	TOTAL
January	72	303	352	112	541	102	160	39	134	0	1,815
February	36	151	176	56	271	51	80	19	67	0	907
March	19	78	91	29	140	26	42	10	35	0	470
April	300	1,232	1,714	573	2,605	464	967	188	759	0	8,802
May	805	3,309	4,621	1,548	7,031	1,251	2,617	508	2,053	0	23,743
June	402	1,655	2,310	774	3,515	626	1,309	254	1,027	0	11,872
July	201	827	1,155	387	1,758	313	654	127	513	0	5,936
August	101	414	578	193	879	156	327	64	257	0	2,968
September	50	207	289	97	439	78	164	32	128	0	1,484
October	59	256	144	48	301	39	82	16	64	0	1,010
November	288	1,211	1,408	449	2,165	407	640	155	535	0	7,259
December	144	605	704	225	1,082	203	320	78	267	0	3,629
TOTAL	2,477	10,248	13,542	4,492	20,727	3,717	7,362	1,491	5,839	0	69,895

				Estimate	d Change in Run	off by Catchmen	ıt (%)**				
Month	WET-01	WET-02	WET-03 WET-05	WET-04 WET-11	WET-06 WET-07 WET-12	WET-08	WET-09	WET-10	WET-13	Other Areas [†]	% Change (for Entire Site)
January	26.8	-22.8	0.1	-0.1	-4.1	-3.4	-27.4	-18.7	0.0	0	-8.6
February	26.8	-22.8	0.1	-0.1	-4.1	-3.4	-27.4	-18.7	0.0	0	-8.6
March	30.4	-20.7	-0.7	-0.6	-4.0	-3.4	-26.8	-18.4	0.0	0	-8.0
April	27.1	-23.8	0.1	0.0	-0.3	-3.4	-13.4	-7.7	0.0	0	-5.5
May	27.2	-23.8	0.1	0.0	-0.2	-3.4	-13.1	-7.5	0.0	0	-5.4
June	27.2	-23.8	0.1	0.0	-0.2	-3.4	-13.1	-7.5	0.0	0	-5.4
July	27.2	-23.8	0.1	0.0	-0.2	-3.4	-13.1	-7.5	0.0	0	-5.4
August	27.2	-23.8	0.1	0.0	-0.2	-3.4	-13.1	-7.5	0.0	0	-5.4
September	27.2	-23.8	0.1	0.0	-0.2	-3.4	-13.1	-7.5	0.0	0	-5.4
October	26.4	-22.0	0.1	0.0	-10.2	-3.4	-13.1	-24.6	0.0	0	-10.1
November	26.8	-22.8	0.1	-0.1	-4.1	-3.4	-27.4	-18.7	0.0	0	-8.6
December	26.8	-22.8	0.1	-0.1	-4.1	-3.4	-27.4	-18.7	0.0	0	-8.6
AVERAGE	27.1	-23.5	0.0	0.0	-1.2	-3.4	-15.9	-10.3	0.0	0	-6.1

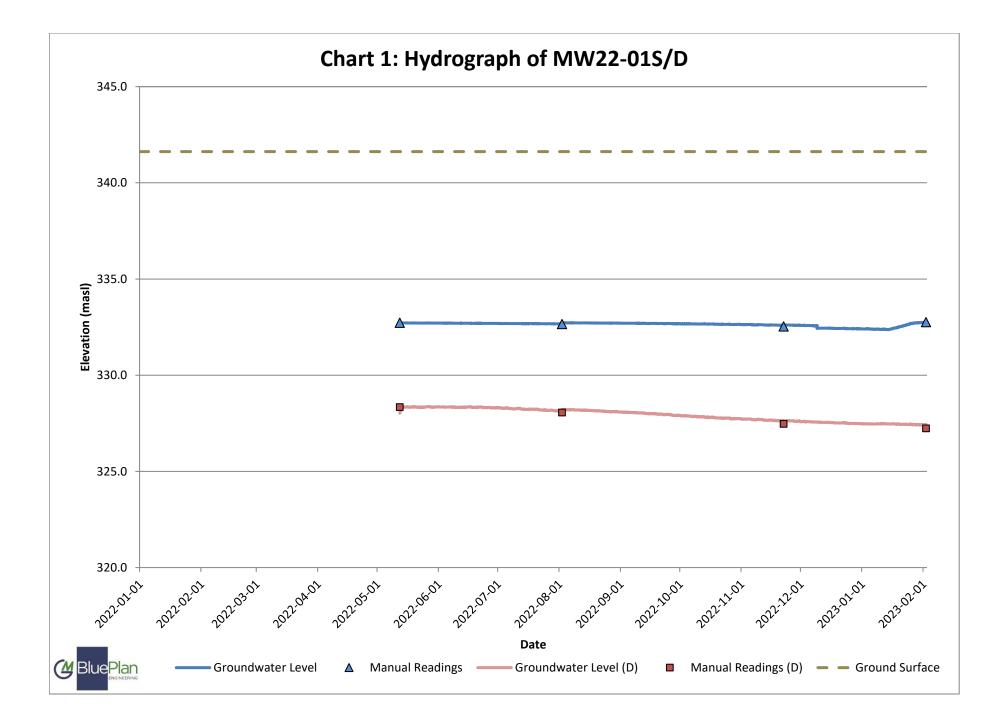
** Percent change calculated by (Post-Pre)/Pre.

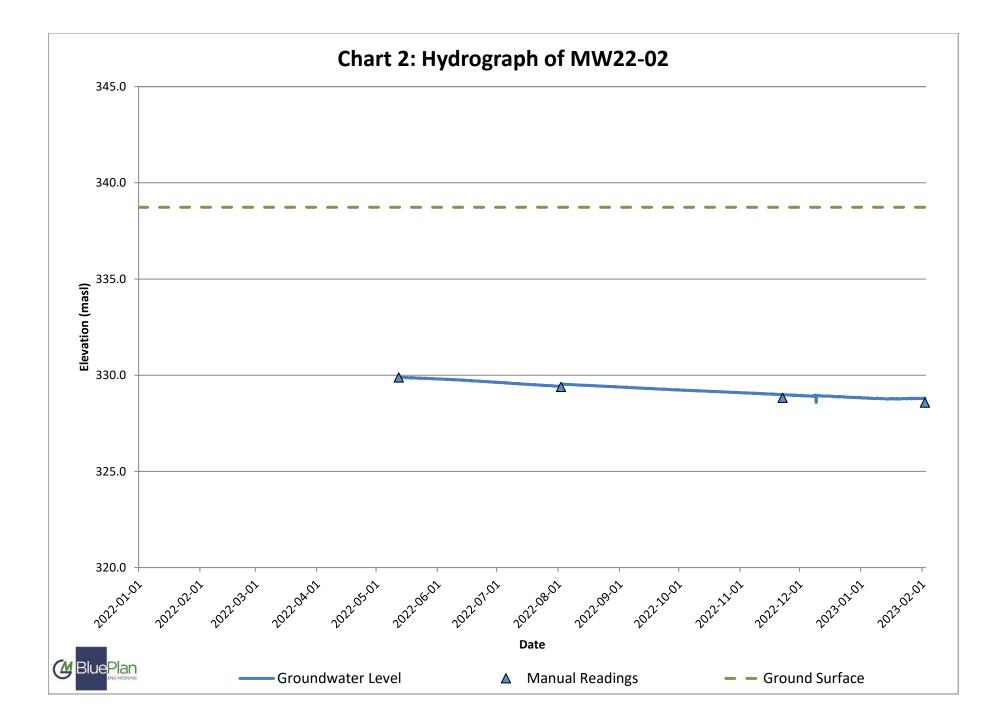
⁺Other Areas - These areas do not generate runoff due to current topography consisting of closed depressions.

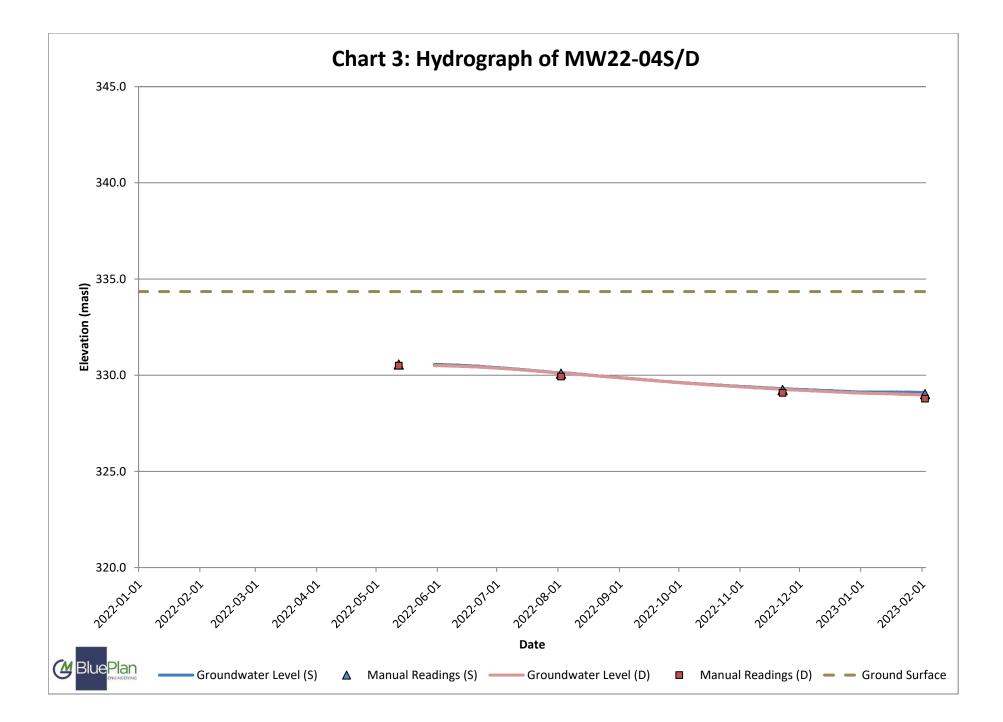
]					Pre-Developme	nt Recharge by Ca	atchment (m ³)					
Month	WET-01	WET-02	WET-03 WET-05	WET-04 WET-11	WET-06 WET-07 WET-12	WET-08	WET-09	WET-10	WET-13	Other Areas - West of Wetland Corridor†	Other Areas - East of Wetland Corridor‡	TOTAL
January	88	602	377	144	1,317	158	160	48	96	2,083	537	5,610
February	44	301	188	72	658	79	80	24	48	1,042	268	2,805
March	22	151	98	38	340	41	42	12	25	538	139	1,447
April	370	2,501	1,852	767	6,095	721	825	204	550	9,352	2,859	26,097
May	993	6,716	4,996	2,073	16,440	1,943	2,226	549	1,488	25,204	7,706	70,334
June	496	3,358	2,498	1,037	8,220	971	1,113	275	744	12,655	3,839	35,206
July	248	1,679	1,249	518	4,110	486	557	137	372	6,064	1,854	17,274
August	124	839	625	259	2,055	243	278	69	186	3,155	916	8,749
September	62	420	312	130	1,028	121	139	34	93	1,829	482	4,649
October	72	498	156	65	782	61	70	21	46	1,699	241	3,710
November	353	2,406	1,507	578	5,267	631	641	191	386	8,331	2,147	22,438
December	176	1,203	754	289	2,633	316	321	96	193	4,167	1,074	11,220
TOTAL	3,048	20,673	14,613	5,970	48,944	5,771	6,451	1,661	4,228	76,118	22,062	209,540

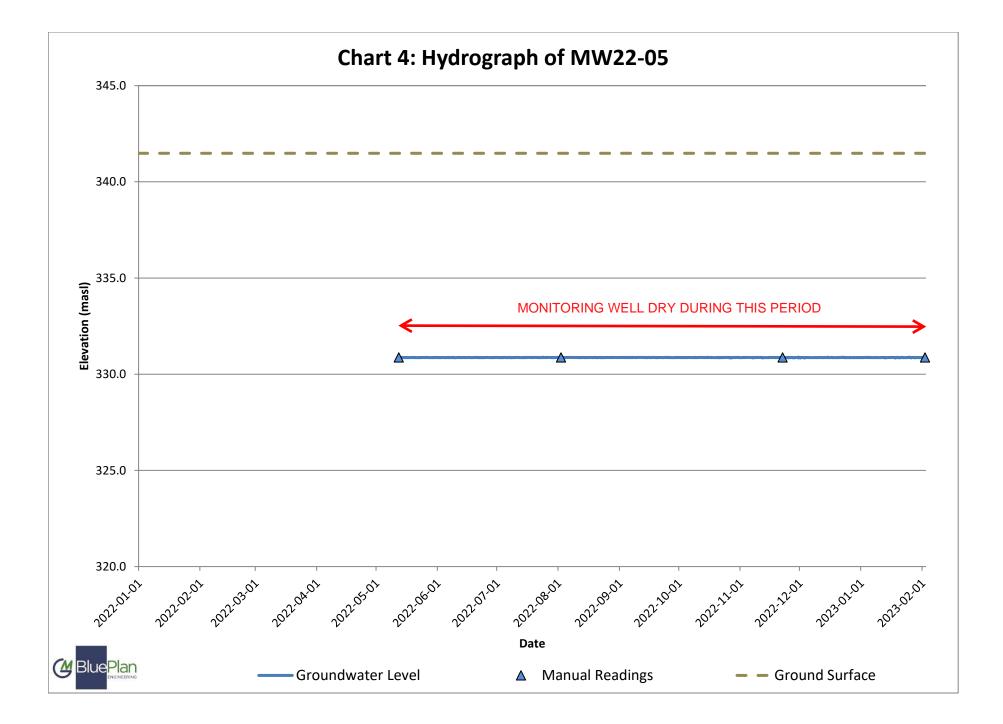
ſ				After	Construction of	Phase 1 Recharg	e by Catchment	(m ³)				
Month	WET-01	WET-02	WET-03 WET-05	WET-04 WET-11	WET-06 WET-07 WET-12	WET-08	WET-09	WET-10	WET-13	Other Areas - West of Wetland Corridor†	Other Areas - East of Wetland Corridor‡	TOTAL
January	112	503	377	145	1,263	153	160	39	96	2,888	514	6,249
February	56	251	188	72	631	76	80	19	48	1,444	257	3,124
March	29	129	98	38	327	39	42	10	25	741	134	1,611
April	472	2,051	1,852	768	6,079	697	967	188	550	11,130	2,847	27,601
May	1,269	5,508	4,996	2,074	16,405	1,877	2,617	508	1,488	30,061	7,697	74,501
June	634	2,754	2,498	1,037	8,203	938	1,309	254	744	17,839	3,837	40,048
July	317	1,377	1,249	518	4,101	469	654	127	372	11,628	1,864	22,678
August	159	689	624	259	2,051	235	327	64	186	8,572	924	14,088
September	79	344	312	130	1,025	117	164	32	93	6,463	481	9,240
October	91	424	156	65	702	59	82	16	47	4,959	241	6,840
November	449	2,011	1,507	578	5,051	610	640	155	386	11,551	2,056	24,994
December	224	1,005	754	289	2,525	305	320	78	193	5,775	1,028	12,497
TOTAL	3,892	17,046	14,611	5,972	48,363	5,575	7,362	1,491	4,229	113,050	21,880	243,471

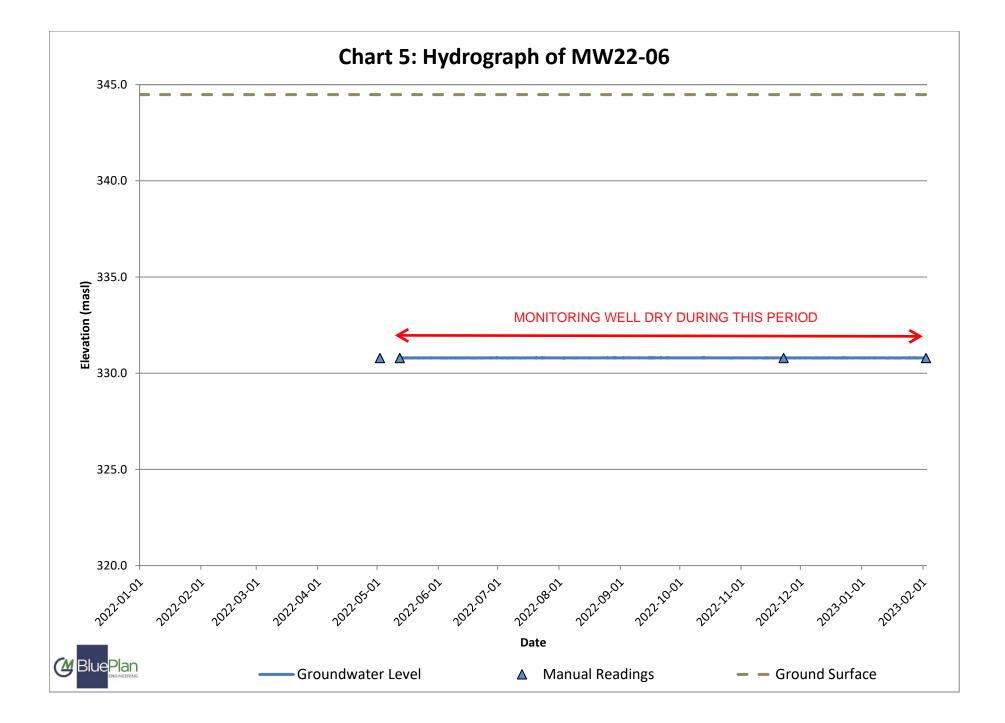
[Estimated Change in Recharge by Catchment (%)											
Month	WET-01	WET-02	WET-03 WET-05	WET-04 WET-11	WET-06 WET-07 WET-12	WET-08	WET-09	WET-10	WET-13	Other Areas - West of Wetland Corridor†	Other Areas - East of Wetland Corridor‡	% Change (for Entire Site)
January	27.3	-16.4	0.0	0.0	-4.1	-3.4	-0.1	-18.7	0.0	38.6	-4.2	11.4
February	27.3	-16.4	0.0	0.0	-4.1	-3.4	-0.1	-18.7	0.0	38.6	-4.2	11.4
March	30.8	-14.2	-0.7	-0.4	-4.0	-3.4	0.6	-18.4	0.0	37.7	-4.1	11.4
April	27.7	-18.0	0.0	0.0	-0.3	-3.4	17.2	-7.7	0.0	19.0	-0.4	5.8
May	27.8	-18.0	0.0	0.0	-0.2	-3.4	17.6	-7.5	0.0	19.3	-0.1	5.9
June	27.8	-18.0	0.0	0.0	-0.2	-3.4	17.6	-7.5	0.0	41.0	-0.1	13.8
July	27.8	-18.0	0.0	0.0	-0.2	-3.4	17.6	-7.5	0.0	91.8	0.5	31.3
August	27.8	-18.0	0.0	0.0	-0.2	-3.4	17.6	-7.5	0.0	171.7	0.8	61.0
September	27.8	-18.0	0.0	0.0	-0.2	-3.4	17.6	-7.5	0.0	253.5	-0.1	98.8
October	26.7	-15.0	0.0	0.0	-10.2	-3.4	17.6	-24.6	0.0	191.9	-0.1	84.4
November	27.3	-16.4	0.0	0.0	-4.1	-3.4	-0.1	-18.7	0.0	38.6	-4.2	11.4
December	27.3	-16.4	0.0	0.0	-4.1	-3.4	-0.1	-18.7	0.0	38.6	-4.2	11.4
AVERAGE	27.7	-17.5	0.0	0.0	-1.2	-3.4	14.1	-10.3	0.0	48.5	-0.8	16.2

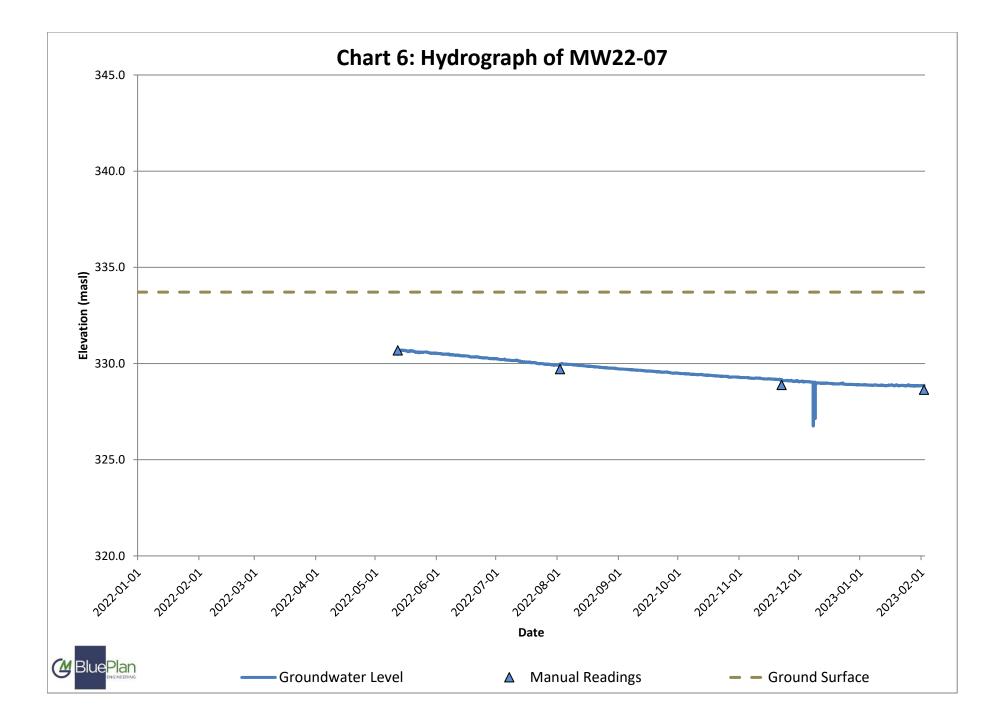

** Percent change calculated by (Post-Pre)/Pre.

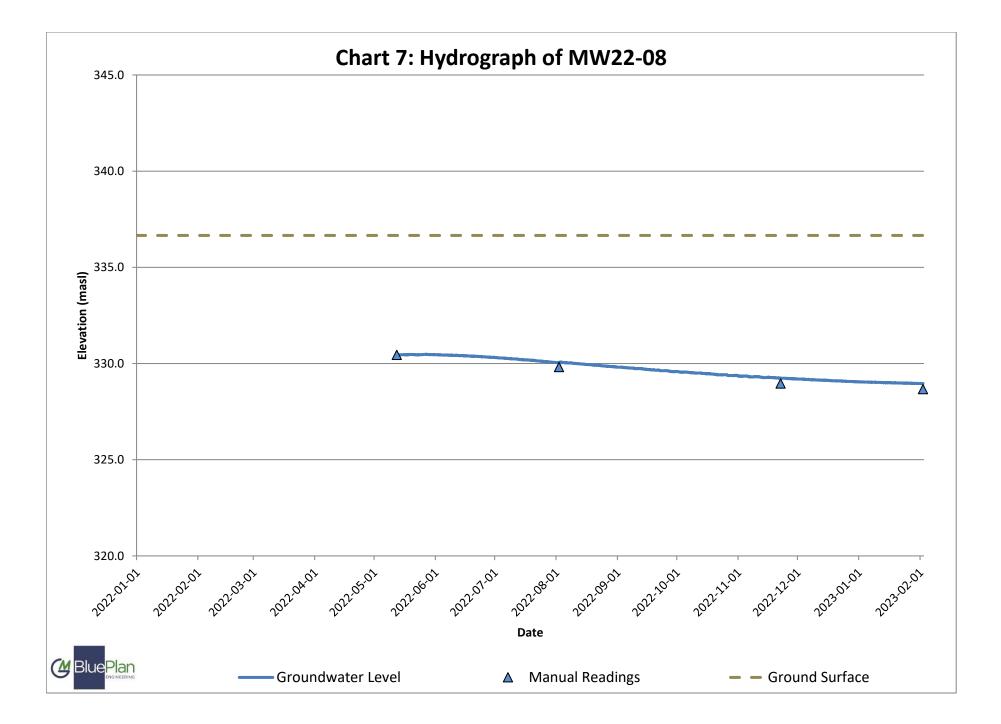

+ Areas that do not drain to a wetland. Pre-Development Catchment 112; Post Development Catchments 109P (Portion Affected by Pre-Grade), 200-series, 300 series.

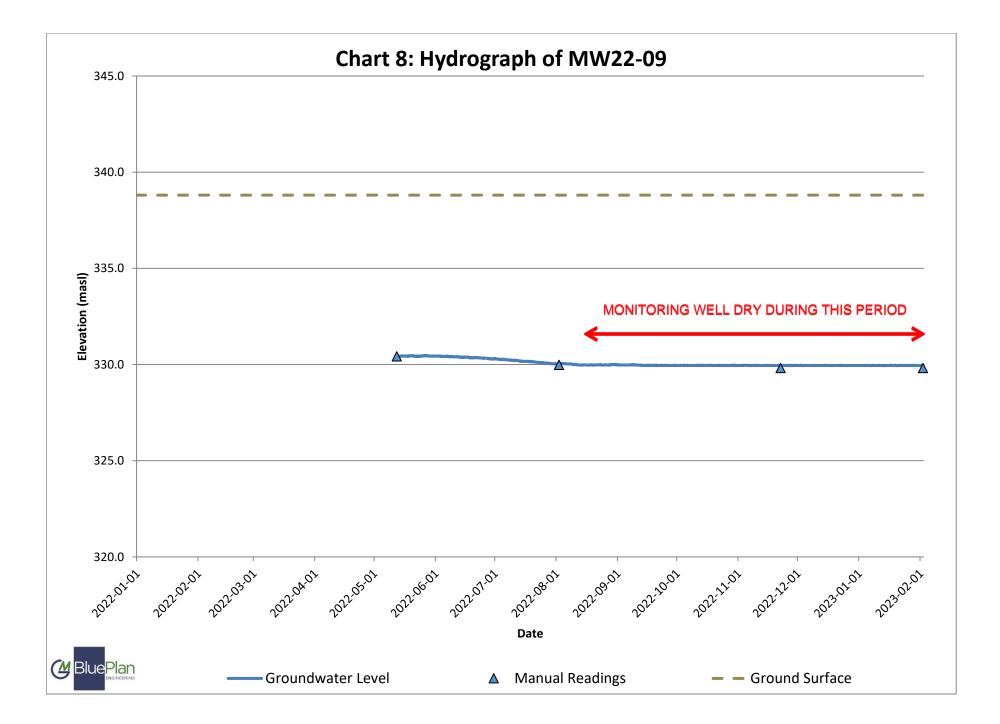

‡ Areas that do not drain to a wetland. Pre-Development Catchments 102 and 104; Post-Development Catchments 102P and 104P

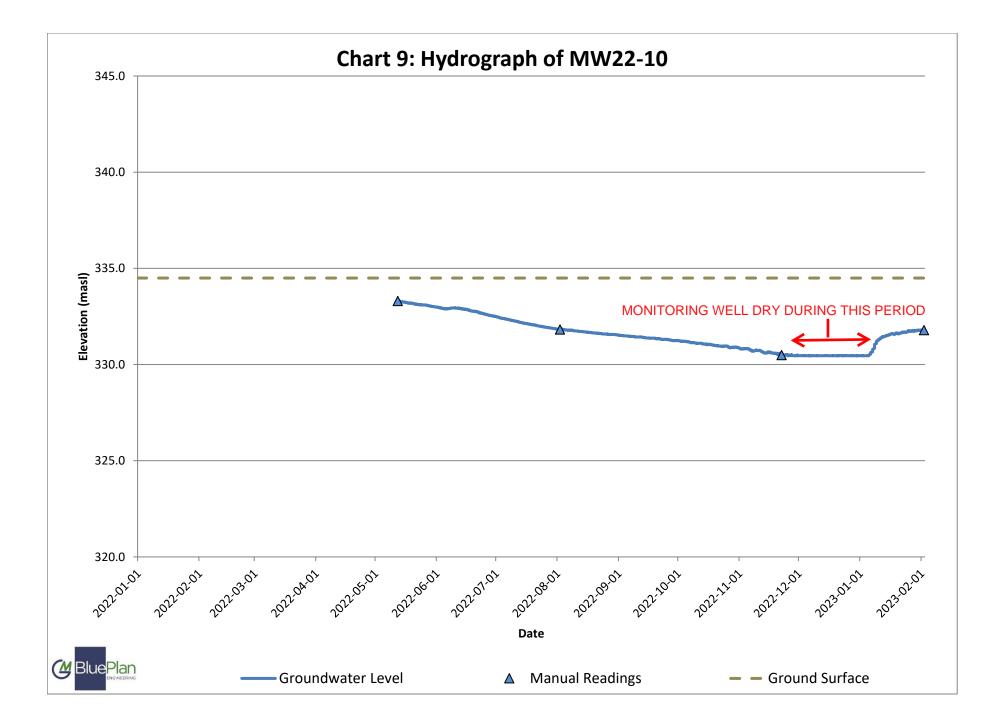


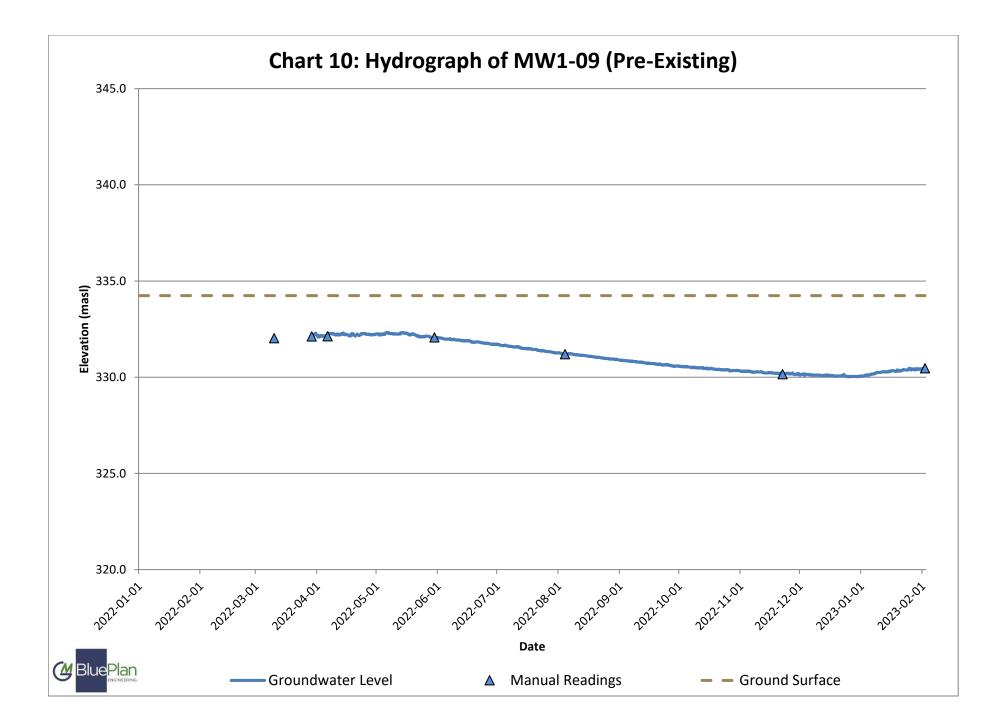

CHARTS

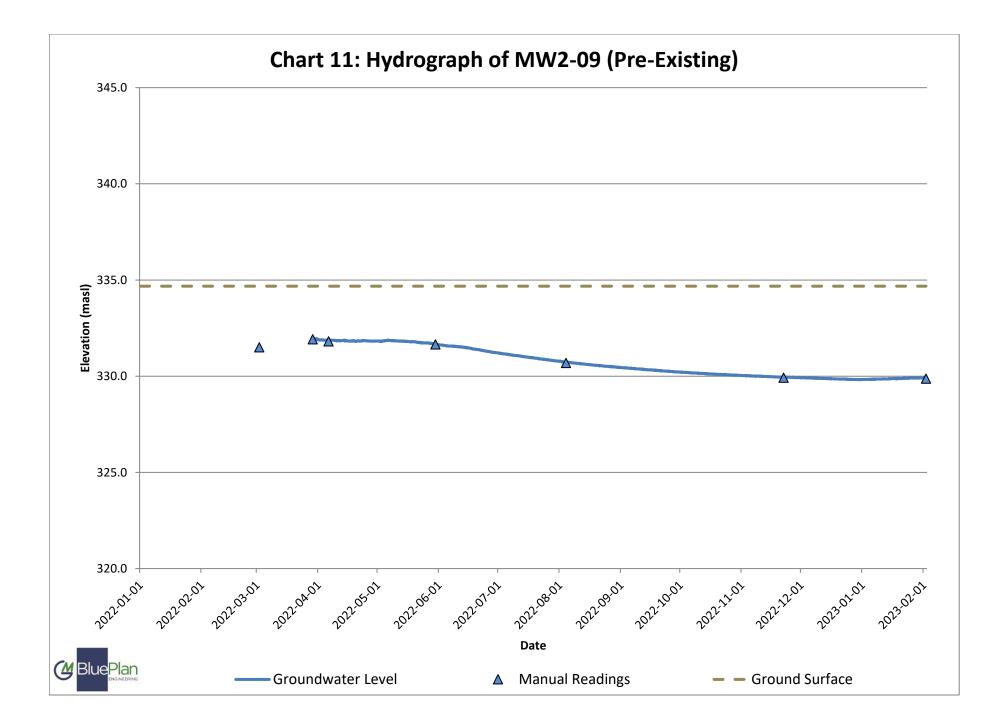


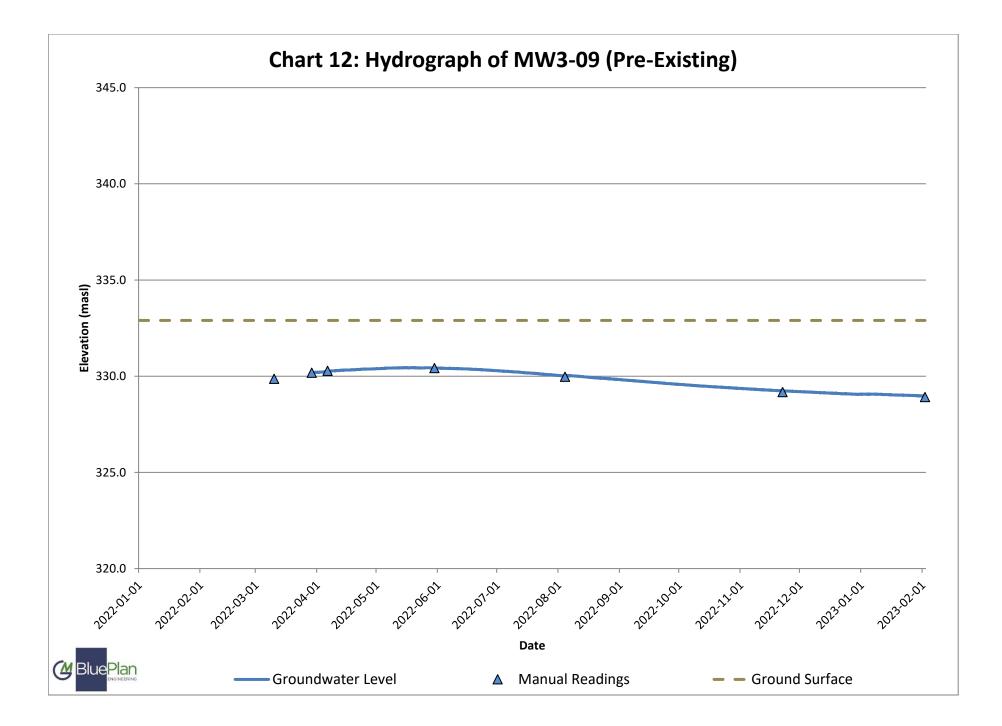


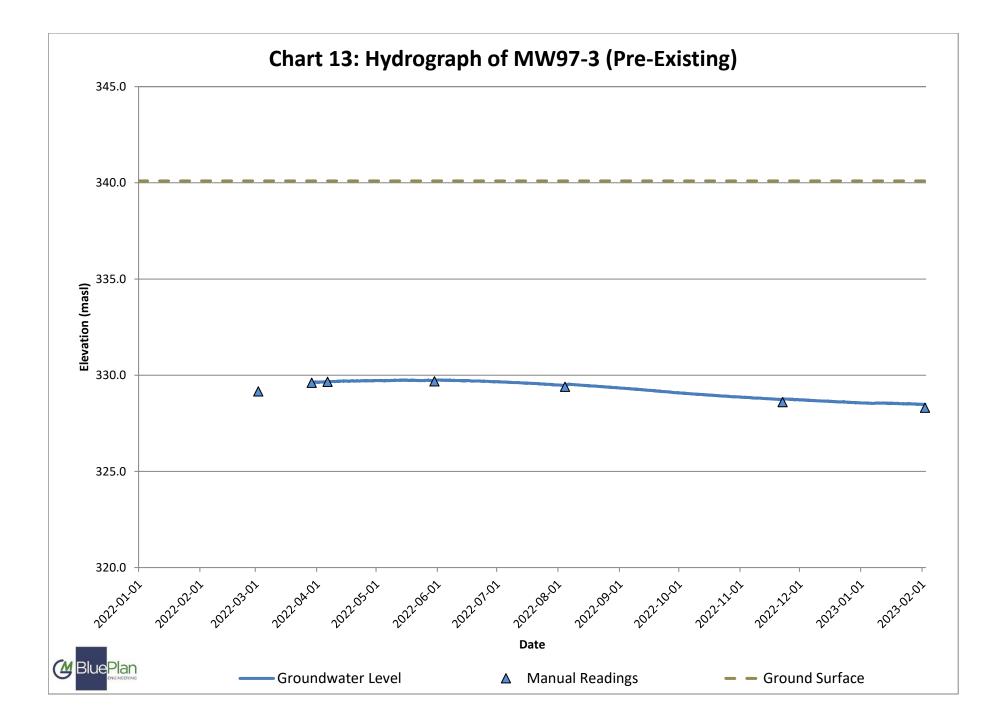


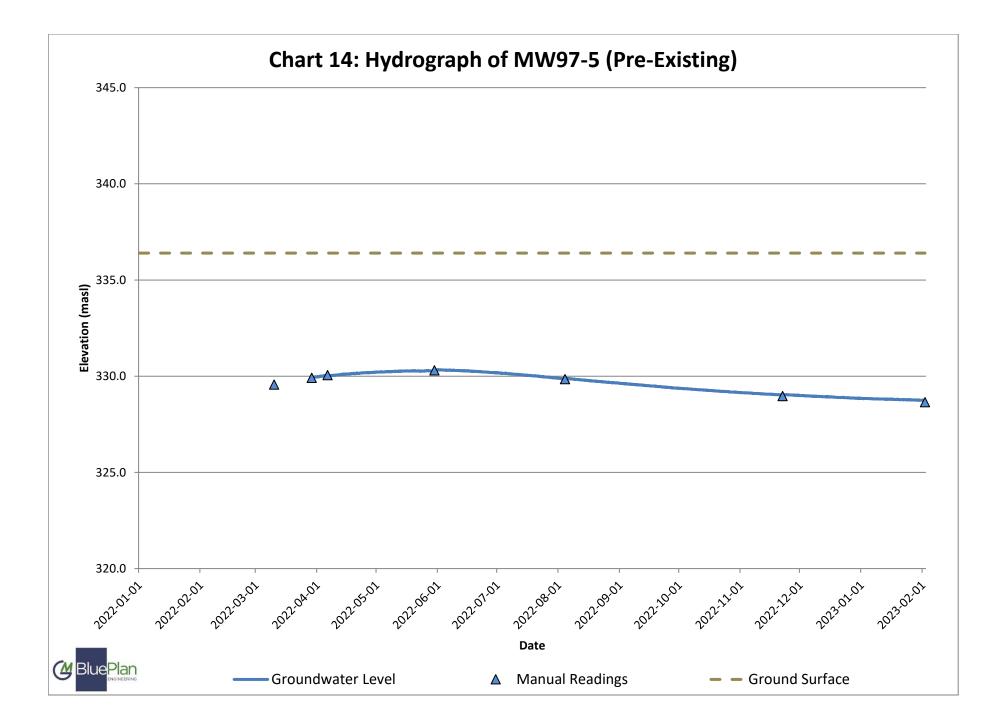


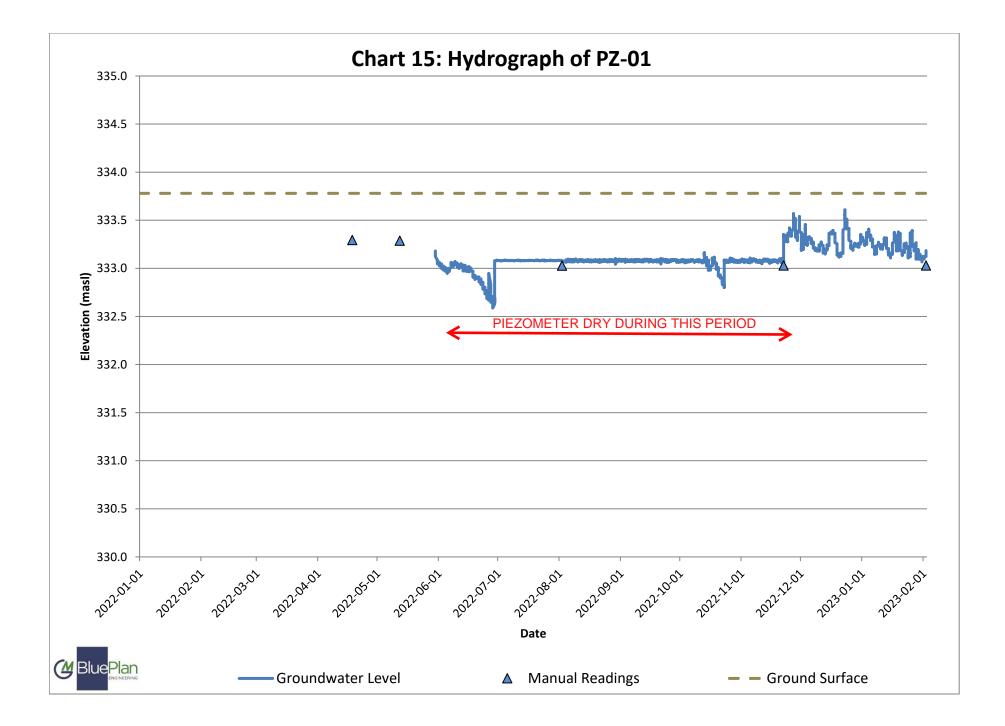


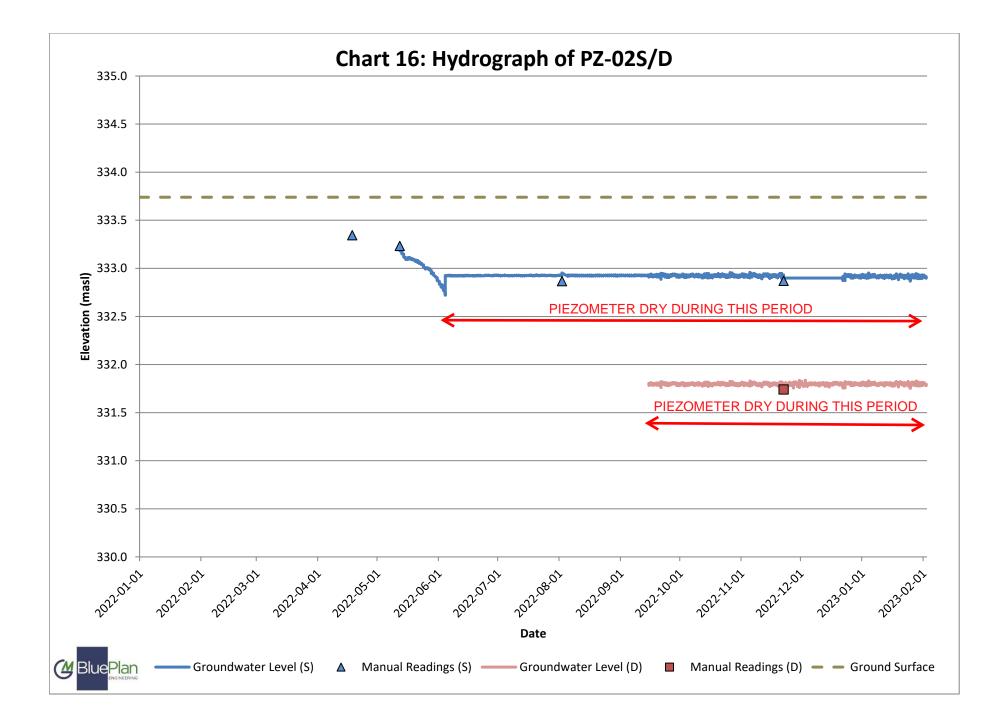


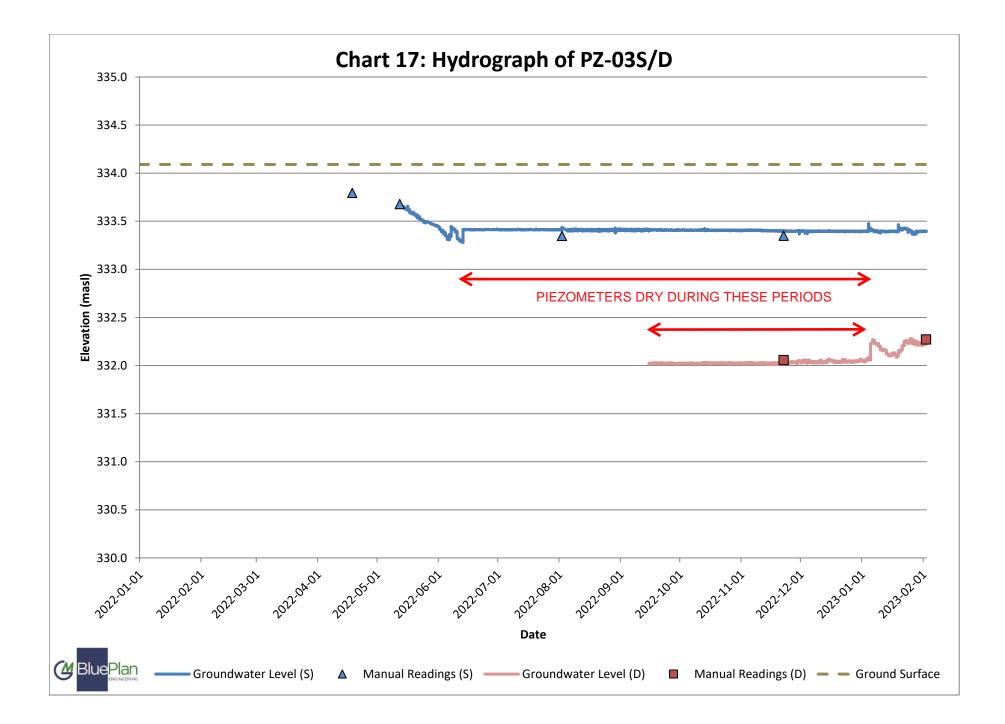


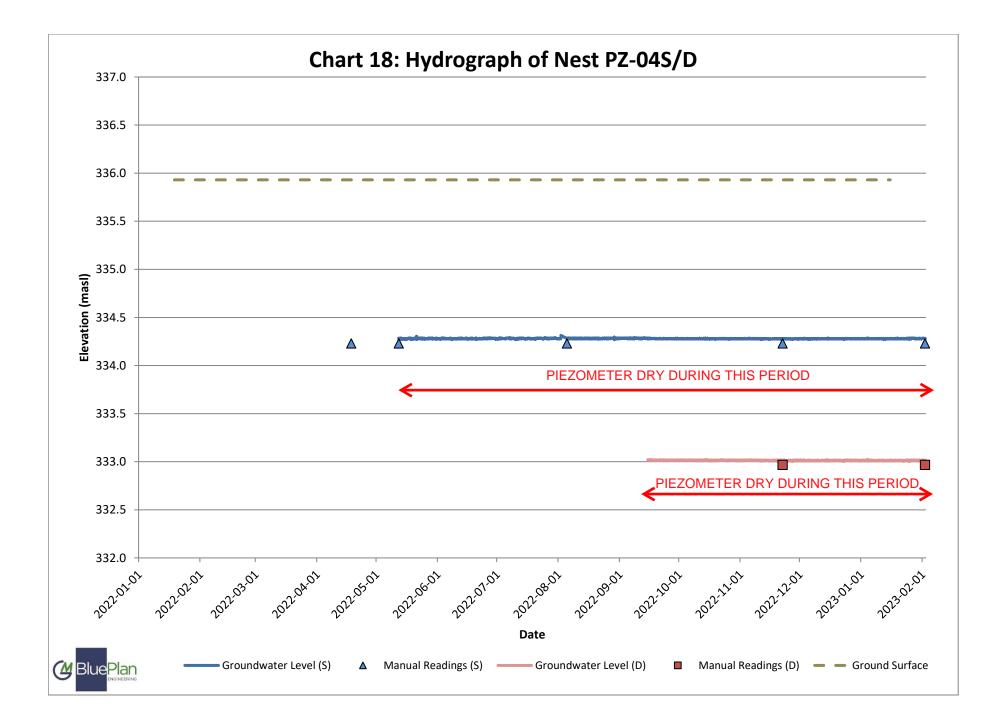


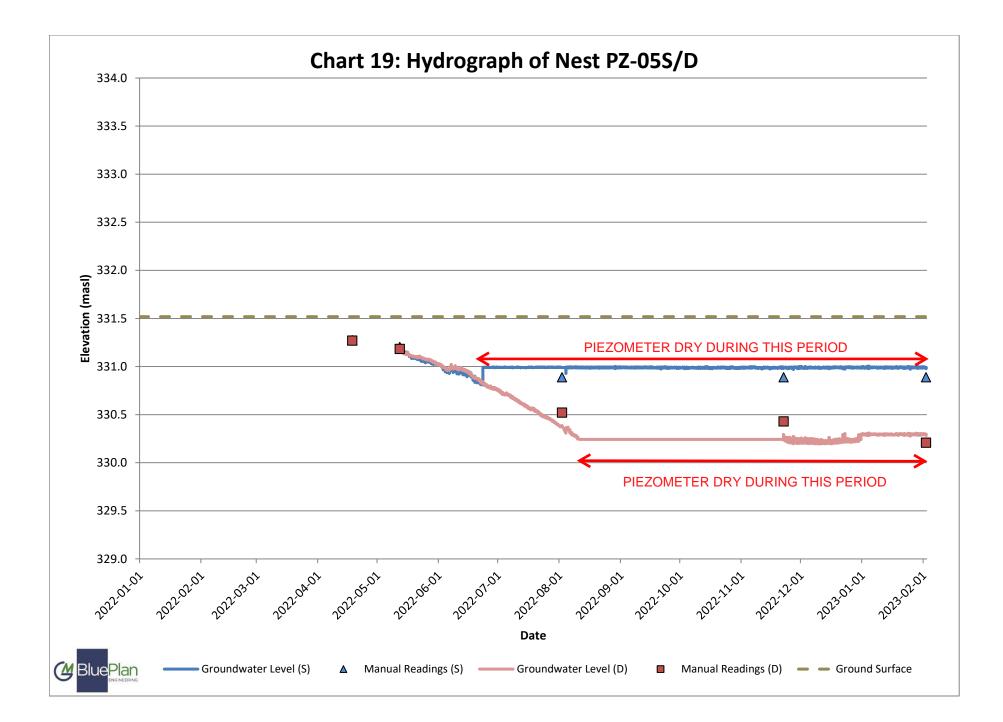


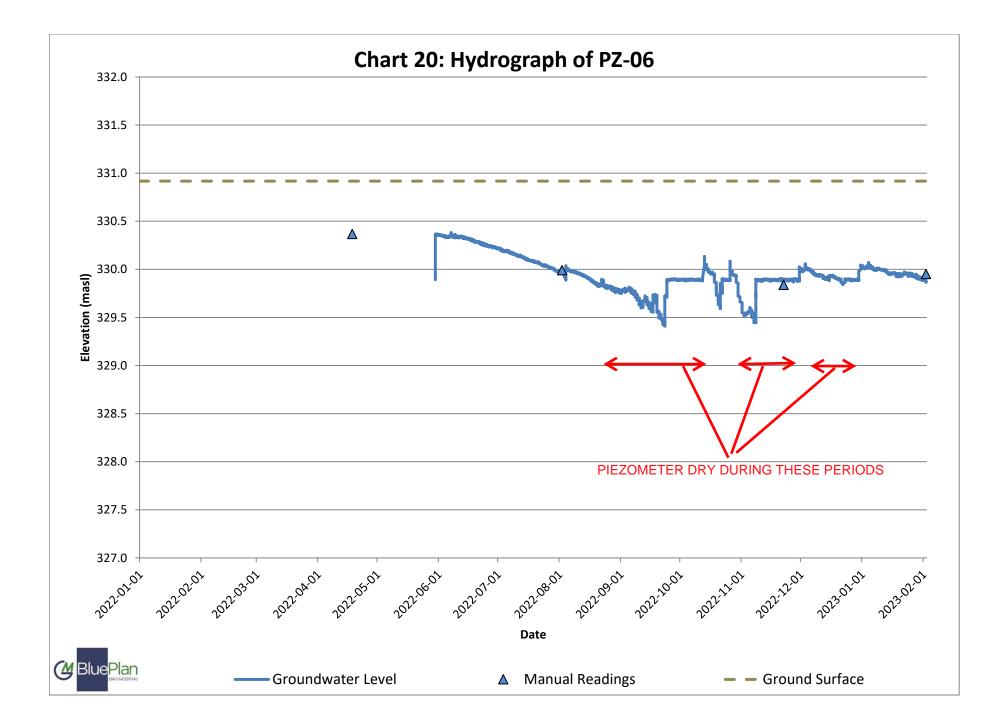


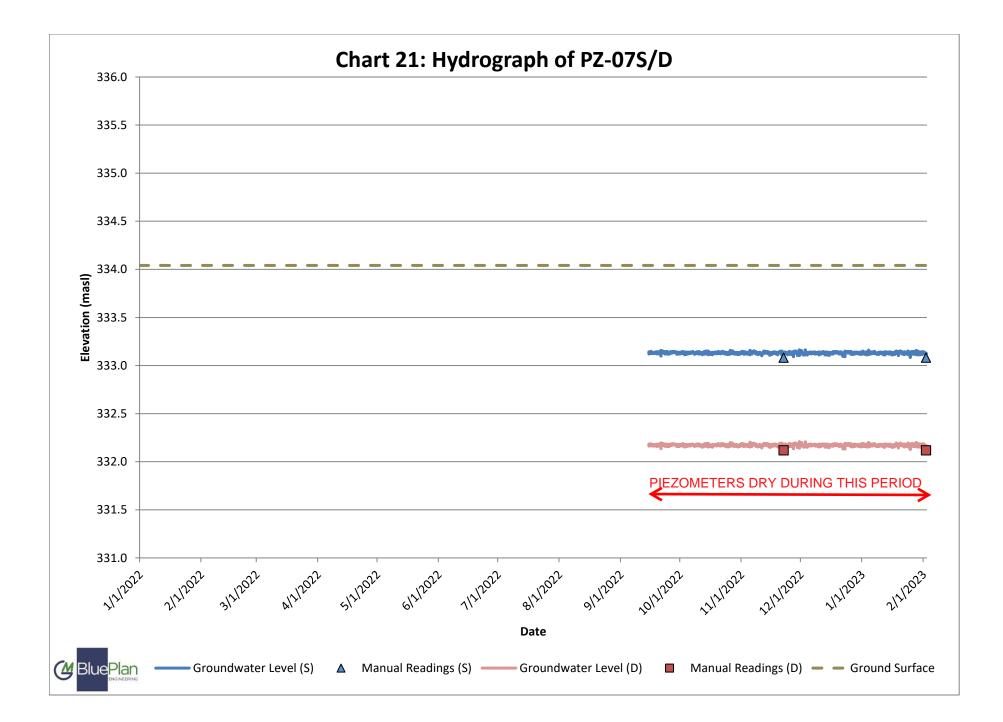


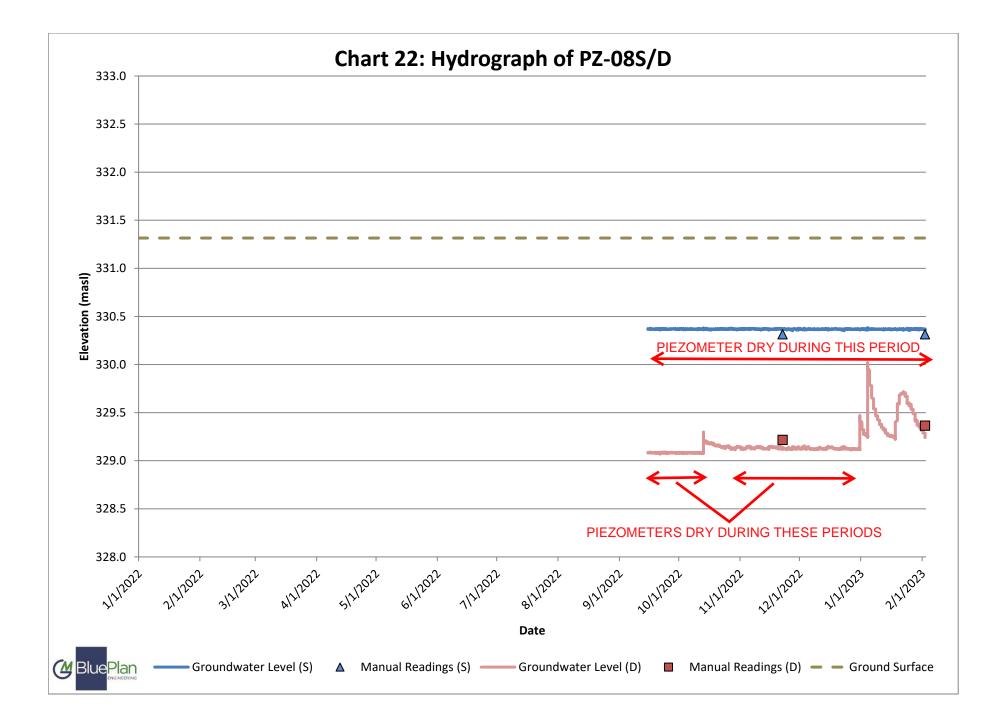


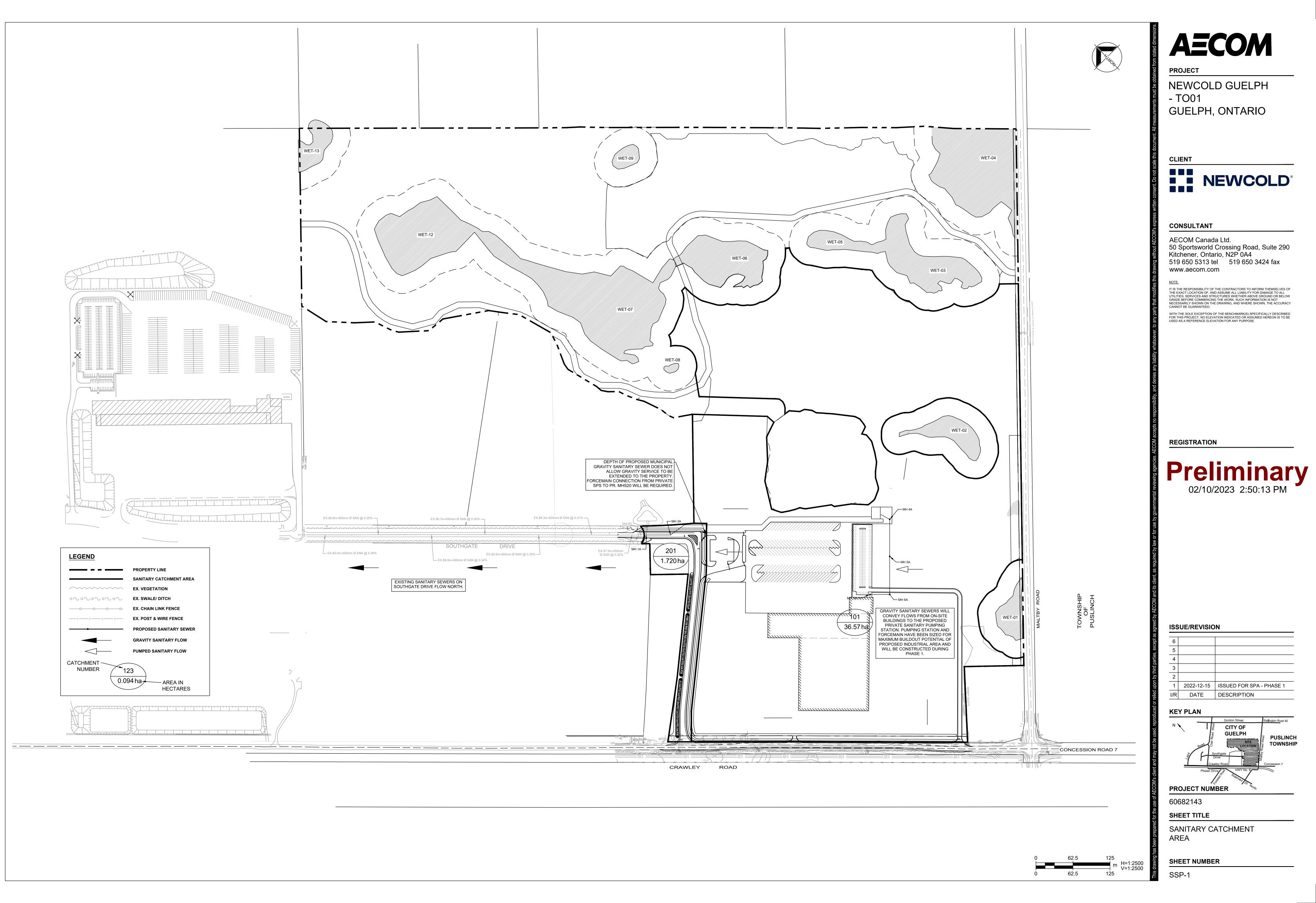




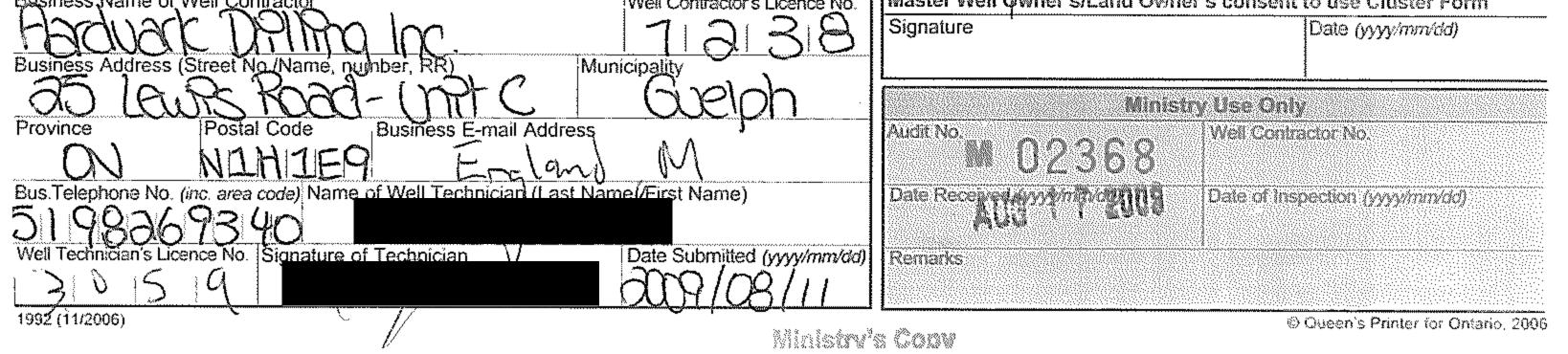








APPENDIX A: PROPOSED SITE PLAN

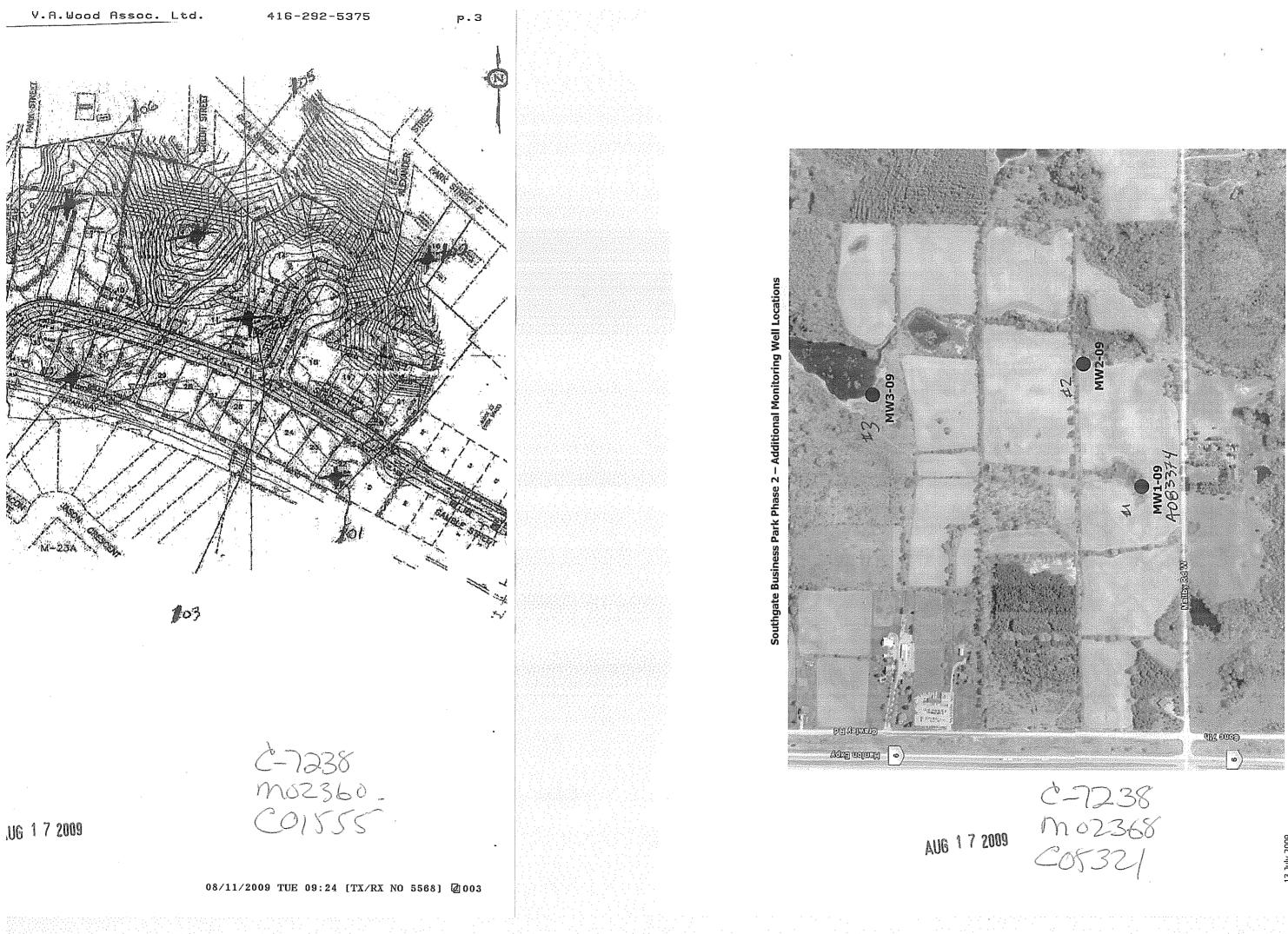

APPENDIX B: MECP WATER WELL RECORDS

			WATER REDCHARGES					
UJE Z CETTIE			67	Nº 67 24997				
			019461330 31253660323	WATSK LIDVIDSION				
Basin 73 WATER WE		-	n'	ls LINC 14				
Con. 7. 111 Lot 14			left	1967				
	ress PU	A C	Fue	lph-				
Casing and Screen Record	Pumping Test							
Inside diameter of casing $5^{\prime\prime}$	Static level							
Total length of casing 67 Fet	Test-pumping r			G.P.M.				
Type of screen	Pumping level		~					
Length of screen	Duration of test			zers				
Depth to top of screen	Water clear or c							
Diameter of finished hole	Recommended pumping rate 8 G.P.M.							
	with pump setti	ng of 🛛 🖉	0feet l	pelow ground surface				
Well Log		1 ··· ··-	Water Record					
Overburden and Bedrock Record	From ft.	To ft.	Depth(s) a which water found	at Kind of water (s) (fresh, salty, sulphur)				
stones clay gravel	0	40						
gravel	40	45						
Sand	51	60						
stones grave	60	67	67	fresh				
For what purpose(s) is the water to be used?		Location	of Well					
· L ·		n below show lot line. Ind						
Is well on upland, in valley, or on hillside?		lot mic. me	neate forths	Jy allow.				
Drilling or Boring Firm Gloer Carley		clean,	RD					
			$-++\lambda$	A				
Address 202 Been ST	Na			7.17				
			1					
Licence Number 2423								
Name of Driller or Borer albert Corley		1						
Address 202 news ST	1 27	<.	0					
Date Sight It 146		The F						
(Signature of Licensed Drilling or Boring Contractor)		- <u> </u>	<u></u>					
Form 7 15M-60-4138	14	15	4					
				- 3				
OWRC COPY				CSS.S8				

			The Ontario Water Resu ATER WEI	ources Com	mission EC	Act	40P/	89
w	ater management in O	ntario 1. PRINT ONLY IN SI	PACES PROVIDED	67038	65	MUNICIP.	CON. Crown 1	. 107
co	UNTY OR DISTRICT		TOWNSHIP, BOROUGH, CITY, TOWN, VILLAGE	3	9 CON.,	10 14 BLOCK, TRACT, SURVEY,	IS ETC.	22 23 24 LOT 25-27
	UN/ELLI	NG / UN	PUSLINCH	15/1911	/		date completed day 28 mo.6	10 ⁴⁸⁻⁵³
			$\frac{1}{13950}$		RC.	BASIN CODE		
`Ŧ		LO	G OF OVERBURDEN AND BEDR	5 26		31		47
G	ENERAL COLOUR	MOST COMMON MATERIAL	OTHER MATERIALS		GENERA	L DESCRIPTION	D FRO	EPTH – FEET M TO
			Jop soil			tak siamaan	0	
_		· .	dry grad st	Seed			22	. 45
╞			arant and			·	45	- 70
			sand dry			13 ^{- 11}	7.0	79
2	Geny		clay /			·····.	99	118
			gravel clay sons	/				
-			Mard packed gr	ave		<u>پ</u>	· 130	140
-			and solve		×		140	765
						· · ·		
	$\begin{array}{c} a_{1} \\ a_{2} \\ a_{3} \\$		2 ast/1/12 aa4s a\$1/1 a 1/1 1 a/6\$ 1.5t 1	<u>0070 11</u>		aann lanast	1 an <u>18-2</u> 9	
	2 10 1	4 15 21	51 CASING & OPEN HOL	43 E RECORD	Z SIZE (S	4) OF OPENING 31 NO.)	-33 DIAMETER 3	75 80 4-38 LENGTH 39-40
Ţ	ATER FOUND	KIND OF WATER	INSUPE WALL	DEPTH - FEET ROM TO		RIAL AND TYPE	IN DEPTH TO OF SCRE	CHES FEET TOP 41-44 80 EEN
þ.	165 2 S	ALTY 4 MINERAL	2 GALVANIZED	0 THE	s	••••••••••••••••••••••••••••••••••••••		FEET
	1 _ FI 2 _ S, 20-23	ALTY 4 🗍 MINERAL	04 4 OPEN HOLE	014/	DEPTH S	LUGGING &	SEALING	(CEMENT GROUT,
	1] FI 2] S. 25-28 1]	ALTY 4 MINERAL	2 🗌 GALVANIZED 3 🗍 CONCRETE 4 DOPEN HOLE	0165	FROM 10	TO 14-17		LEAD PACKER, ETC.
	1 - FI 2 - S. 30-33 - 1 - FI	ALTY 4 MINERAL	24-25 1 STEEL 26	<u>C165</u> 27-30		21 22-25		
		ALTY 4 MINERAL	4 🗆 OPEN HOLE		26	29 30-33 80		
2	PUMPING TEST METHO	D 10 PUMPING RATE	11-14 DURATION OF PUMPING 15-16 GPM 02 HOURS 00 17-18 HOURS 00 MINS.			OCATION O		AND
1.1	LEVEL	PUMPING			T LINE. INDIC	OW SHOW DISTANCES OF ATE NORTH BY ARROW.	- WELL FROM ROAD	AND
1 1 1 1	070	22-24 15 MINUTES 26-3 100FEET	1			L +	P.e	
	IF FLOWING,	38-41 PUMP INTAKE	SET AT WATER AT END OF TEST 42		•	1-201-	a int	7
MIId	RECOMMENDED PUMP	PUMP J	43-45 RECOMMENDED 46-49				F_{a} H	
•		20.3 GPM./FT. SPECIF			, 3X	350		
	FINAL STATUS	2 OBSERVATION WEL			ND			
	OF WELL	3 TEST HOLE 4 RECHARGE WELL	⁷ 🗋 UNFINISHED	I	ZNAZ	.3M -V/1		
	WATER	¹⁶ 1 DOMESTIC 2 STOCK 3 I IRRIGATION	5 COMMERCIAL 6 MUNICIPAL 7 PUBLIC SUPPLY		×	3		
	USE <i>01</i>	4 INDUSTRIAL	8 COOLING OR AIR CONDITIONING			Lu'T	. 15	
	METHOD	CABLE TOOL	6 BORING IONAL) 7 DIAMOND	<u>لل</u>		Let	14	
	OF DRILLING	3 ROTARY (REVERSE 4 ROTARY (AIR) 5 AIR PERCUSSION			,	:		:
	NAME OF WELL CON		LICENCE NUMBER	DRILLERS REMAN		DNTRACTOR 59-62 DA	17 87 1 7	63-68 80
	ADDRESS	ber Carles	1906	DATE OF INSP		INSPECTOR	UUUII	
		nerve,	St Julph	D REMARKS:	12/11	,		4
TNC TNC	SIGNATURE OF CON	ITRACTOR	SUBMISSION DATE	OFFICE				P
			DAY_6_MO BOU YR 70	6				WI
	OWRC CC	PPY			P			-

Ministry of the	WAT	The Ontario Water Resources Ac ER WELL RE	ECORD
2. CHECK 🗵 COR	SPACES PROVIDED	6708738	27 23 24 LOT 25-27
COUNTY OR DISTRICT	TOWNSHIP BOROUGH CITT TOWN VIELAGE	Ī1	омрыетер <u>150</u> 16 мо <u>160</u> ур. 26
- ² i i i i i i i i i i i i i i i i i i i	16 RC' 17 15 24 25		
MOST	OG OF OVERBURDEN AND BEDROC	CK MATERIALS (SEE INSTRUCTIONS)	DEPTH · FEET FROM TO
GENERAL COLOUR COMMON MATERIAL Brown Clay Drown Clay Drown Clay Cay	stones gravel sand		0 22 22 7J 70 75
		+ 	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DIAM MATERIAL THICKNESS INCHES FRI 10-11 I SCSTEEL 12		65 75 60 DIAMETER 34-38 LENGTH 35-40 INCHES FEET DEPTH TO TOP 41-44 30 OF SCREEN FEET
15-16 I FRESH 3 SULPHUR 19 2 SALTY 4 MINERAL 20-23 1 FRESH 3 SULPHUR 24 2 SALTY 4 MINERAL 20-33 1 FRESH 3 SULPHUR 34 30-33 1 FRESH 3 SULPHUR 34 2 SALTY 4 MINERAL 34 34	1 □ CONCRETE 4 □ OPEN HOLE 24-25 1 □ STEEL 26 26		EALING RECORD
STATIC LEVEL WATER LEVEL 25 WATER LEVEL PUMPING 22-24 19-21 22-24 IS MINUT 5/ FEET 72 FRET 5/2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LOCATION OF W	
34 1 WATER SUPPLY FINAL 2 OBSERVATION STATUS 3 TEST HOLE OF WELL 4 RECHARGE WE 55-56 1 DOMESTIC 2 STOCK 3 IRRIGATION USE 4 IRRIGATION OTHER	WELL	New animal hospital aprox 200' off expressionary Huge	
57 1 CABLE TOOL METHOD 2 ROTARY (CON) OF 3 ROTARY (REVE) DRILLING 4 EX ROTARY (AIR) 5 I AIR PERCUSSION	RSE) B DIETTING 9 DRIVING	HOI F	
NAME OF WELL CONTRACTOR ADDRESS 1235 Tripity A NAME OF DRILLER OR BORER SIGNATURE OF CONTRACTOR	Ancaster Ont Licence NUMBER Ancaster Ont Licence NUMBER TGUSTE SUBMISSION DATE	DATA 58 CONTRACTOR 59-62 DATE RI SOURCE DATE OF INSPECTION INSPECTOR CONTRACTOR DATE OF INSPECTION REMARKS	CSS.ES
MINISTRY OF THE ENVIR	DAY 10 MO 100, YR 04		FORM NO. 0506—4—77 FORM 7

Ontario	Ministry of the Environment		for Master We		Nicker and/o	r Print Below)	Cluste	ster Well Record f er Well Construction 903 Ontario Water Resources Page of	on
Master Well Owner's and First Name Mailing Address (Street Number 55 Keller Location and Construction Address of Well Location (Street Mathematication (Street Mathematication (Street County/District/Municipality UTM Coordinates Zone, East	Last Pr/Name, RR) MEEL on of the Master We et Number/Name, RR)	Name Municipa II in the Clust	anto	S S S S S S S S S S S S S S S S S S S	Provir	Node of Op		Telephone No. (inc. area coo <u>H341166618071</u> <u>Concession</u> Province Postal Code Ontario	10) 5
NAD 8317560	5979481 K Materials (see instr Other Materials	41180 6	Dermin back of this for Depth n From		Depth From		ated, specify_ Hole	Undifferentiated Averaged Details Diameter (Centimetres)	
					Public Domes		ustrial	ar Use Not used Other, specify Dewatering	
					Livesto Livesto Irrigatio Cable Rotary Rotary Rotary Rotary	on Tes Tool (Conventiona (Reverse) (Air)	nicipal	Monitoring Cooling & Air Conditioning Construction Digging d Digging Moliner, specify	
		۰			Dewate	ement Well ering Well ion (Construct ing and Sci	C Abando C Abando C Other, s ion) C Abando Cen Useo	of Well ned, Insufficient Supply ned, Poor Water Quality specify ned, other, specify Static Water Level Test	
Inside Diameter (Centimetres) (steel, plastic 5 plast	Construction Del Material fibreg/ass, concrete, ga		ness From	Metres) To 9	Galvan Outside Di	Yes No ized Ste ameter (Cen . 4 . 4	Sci Sel Fibre timetres) (S Water Del		
Depth Set at (Metres) From To O 0.3 Con	Space/Abandonmen Type of Sealant U (Material and Type	sed 9)	Volum	e Used Metres)	Water fou	nd at Depth Metres	Gas Fres Kind of Gas Fres Kind of Gas Fres	h	rals
0.3 5.4 6er 5.4 9 50	ntonite c nd	6725			Informati Total Wel		Construction	2009/07//2 If out the additional Cluster Well for each parcel of land and clust Please indicate Number of Cluster V Information Log Sheets Submitted	(e <i>r.)</i>
					(8.5" x 14'	*). Sketches a box to confir	provided as ar are not allowed m detailed ma Iditional informuest	Well Cluster a attachment no larger than legal sizes p is provided as per Section 11.1 (3) mation concerning the cluster to Date (yyyy/mm/dd)	3)

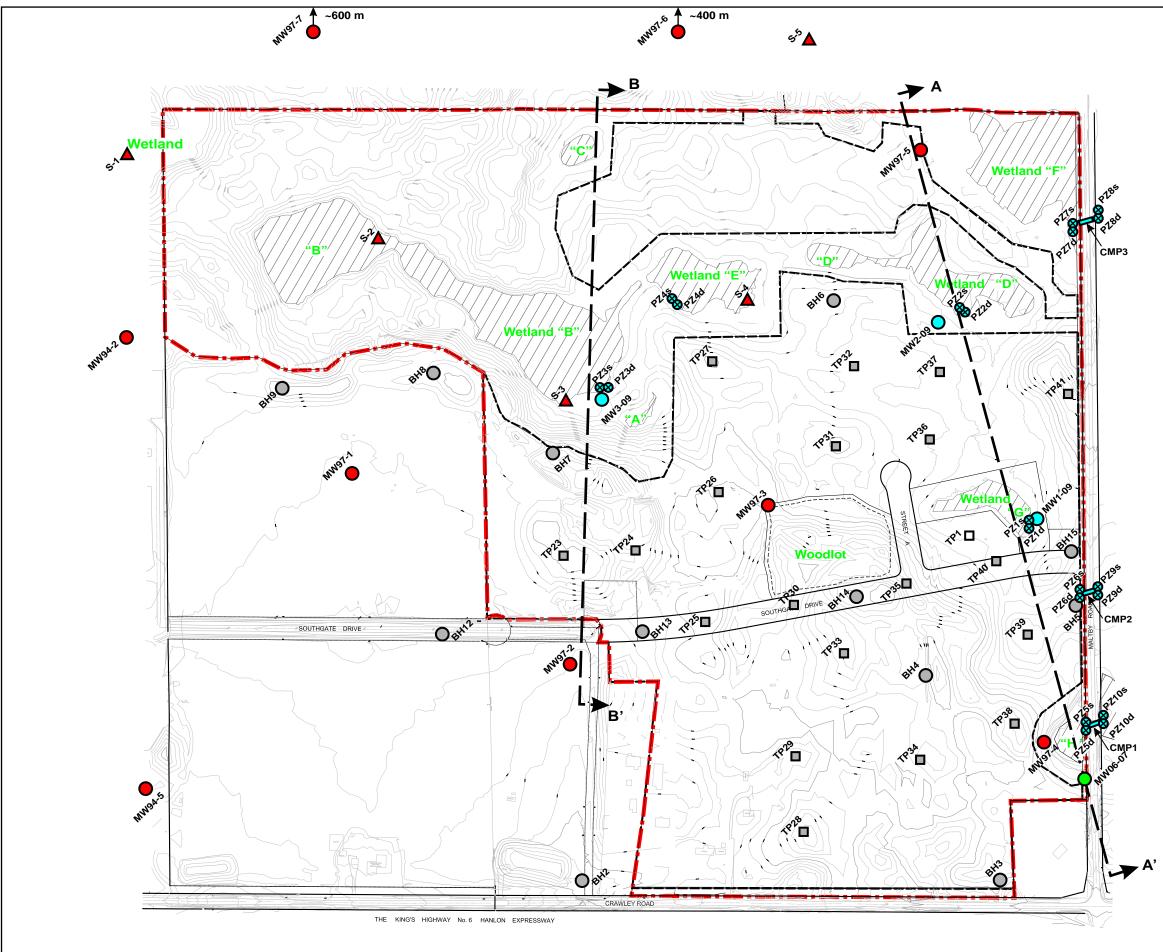


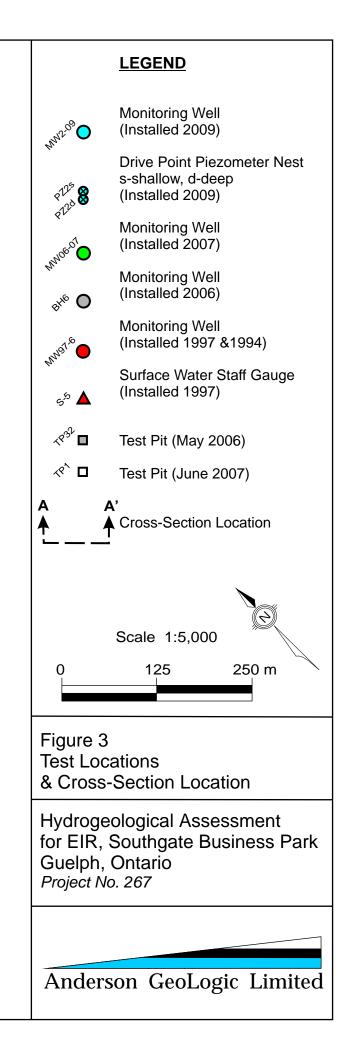
Well A 083374 "I Well Tag No.)

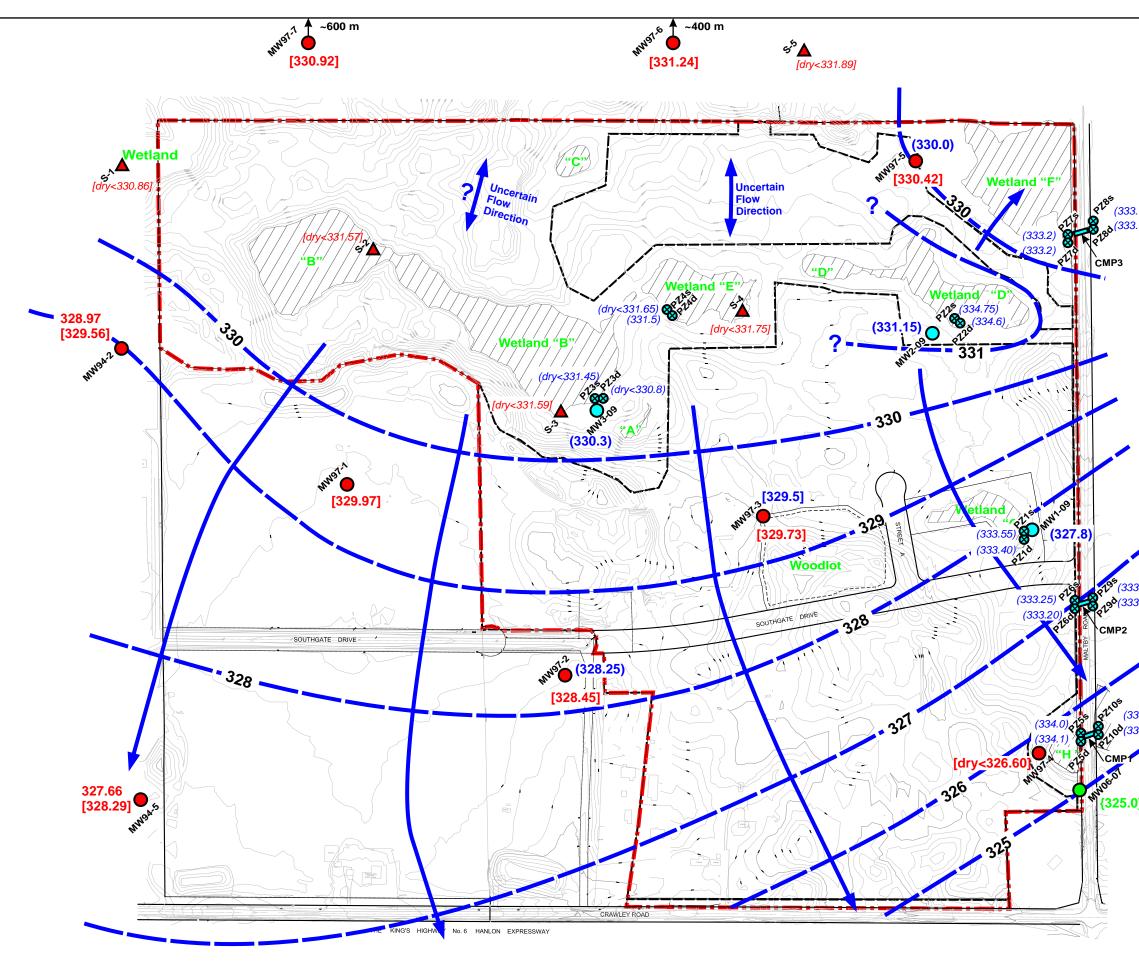
Cluster Well Information for Cluster Well Construction

Regulation 903 Ontario Water Resources Act

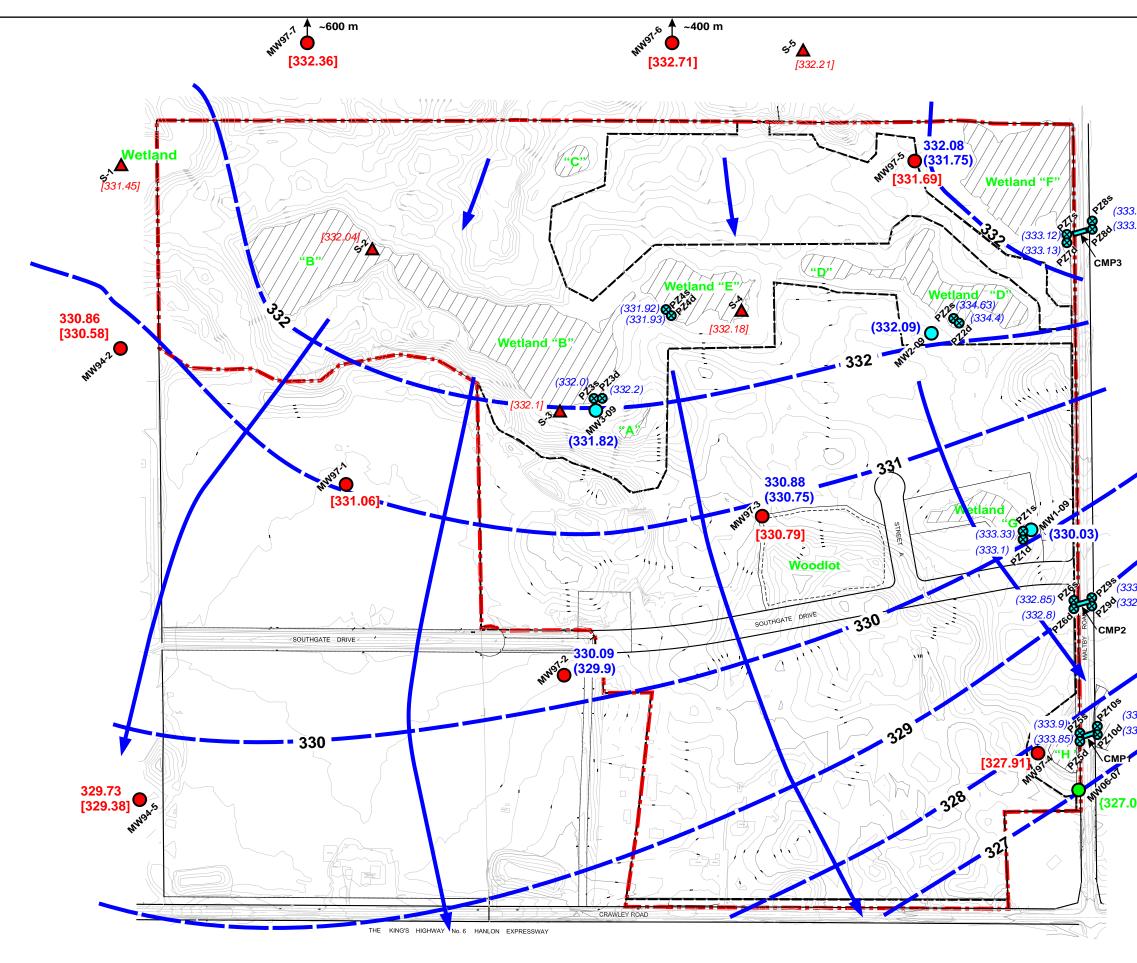
													Fage	- <u>1</u> -1- 01	
Prope	rty Owner's Information													01.	
First No	me LON Guada 6 Last	Name		**********	Mailing Add	ess (Street N	o./Name,	RR)	Munici	ipality					
Provinc	e Posta Co	rie	E.mai	I Address	101	Elhel	<u>d 21</u>	reel	Tolophono I	No. (inc. area	<u>OII (</u>				
2	M $M91$	WB 11	43	17901090					4116	4611	807115				
Clust	er Well Information	<u> </u>								JIQI					
Addres	of Well Location (Street Number/Name, RF	})	Lot	1,16 00	ncession T	ownship	الماما		Count	v/District/Mun		Signature of Tecl		or	
	AHDY ROOM		ostal Code	1+15	S Unit Make N		UPIT No	le of Oper	ation D Up	differentiated	Averlaged		ninelani Oontrael		Date (yyyy/mm/dd)
	Gielch Ont	1		II Ğ	o cm.n	ioder		entiated, s		inereniateu					
Well #	UTM Coordinates	Full Depth of	f Hole Diameter	Method of	Casing Material	Casing Length	Screen Int	erval (metres)	Annular Space	Static Water	Abandonment		Comments	<u>_</u>	Date of Completion
on Sketch	Zone Easting Northing	Hole (metres		Construction		(metres)	From	То	Sealant Used	Level (metres)	Sealant Used				(yyyy/mm/dd)
- Antiputer	175658794814180	129	2)	angres	pleefic	36	6	9	sand, bentonite			master	well		2004/07/13
2	175659674814452	9	21	auger	plastic	46	6	9	Song -1 bentonit				-		2009/07/12
3	76655854814692	7.6	21	ange	plastic	4.5	4.5	9.6	Sand, bentomite						2009/07/1.
					ŀ										r)
															-
									<u> </u>			Date 1st Well in Clu	ieter Constructed	Date Last Well in	Cluster Constructed
Well C	ontractor and Well Technician Ini	formatior										(vyyy/mm/dd) 2009/07/		2009 DY	
A	Name of Well Contractor			iness Address (S 5 1005		me, RR)		Municipa	welch		Province	Ministry Use			
Postal C	ode Business Telephone N	lo. (inc. area	code)	Well Contractor's	s Licence No. Bus	iness E-mail /	Address		wyn			Date Received ()	승규님은 아이에는 아이들에서 아름이 있는 것이다.	Date Inspected	1 (vvvv/mm/dd)
<u>N 1</u>	ode HI1E951986	3 6 9	131410	1617	318							AUG 1 7	2009		an an Arland an Arland. Na Frank an Arland a
Name of	Well Technician (First Name, Last Name)			Well Technician's	s Licence No. Dan	s oubnitted (y	ууултаний)	Signature	OF TECHNICKEN			Audit No. c 05	321	Remarks	218
								I					e son nho	11100	* <i>U</i> OY

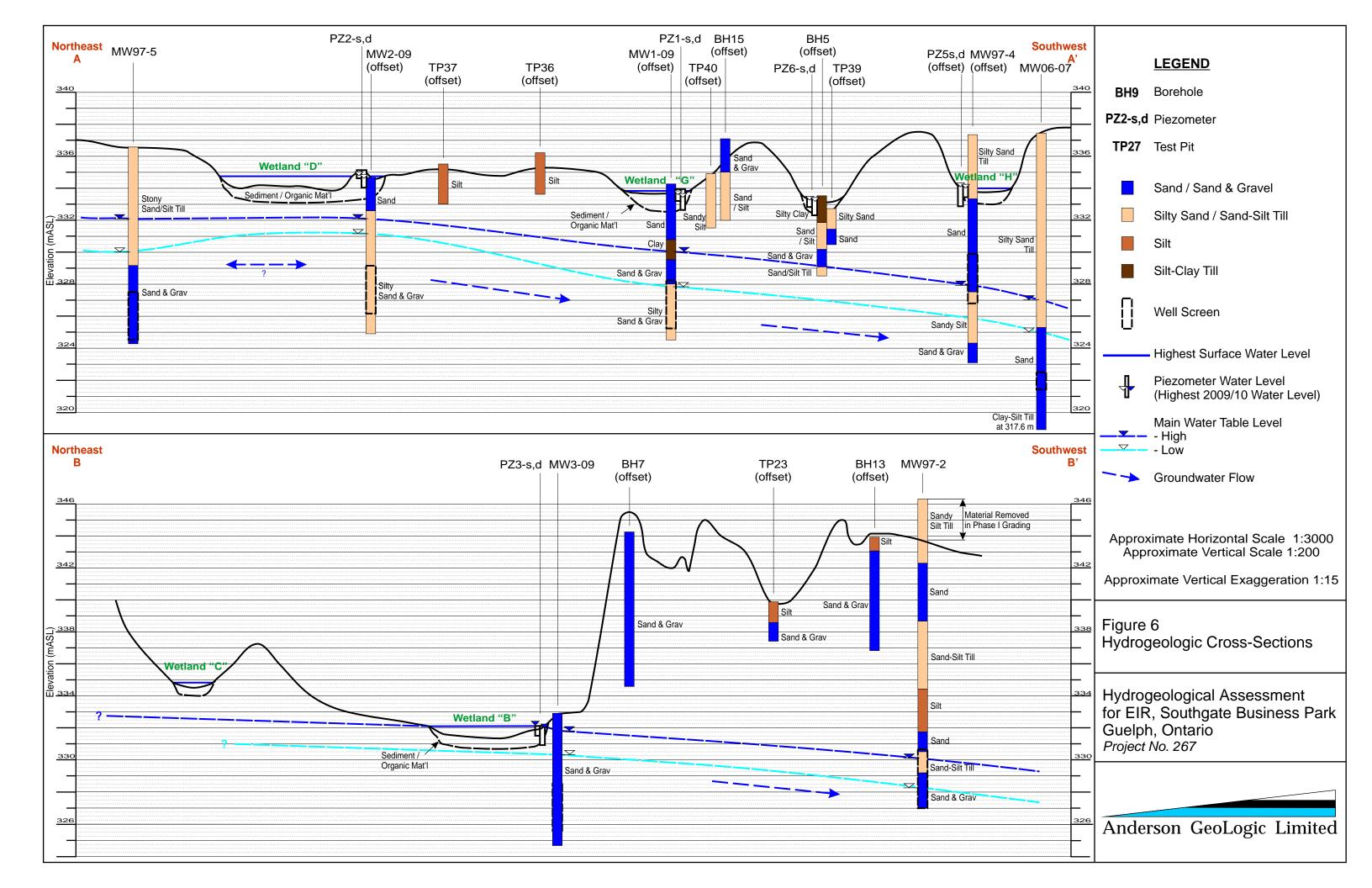

13 July 2009

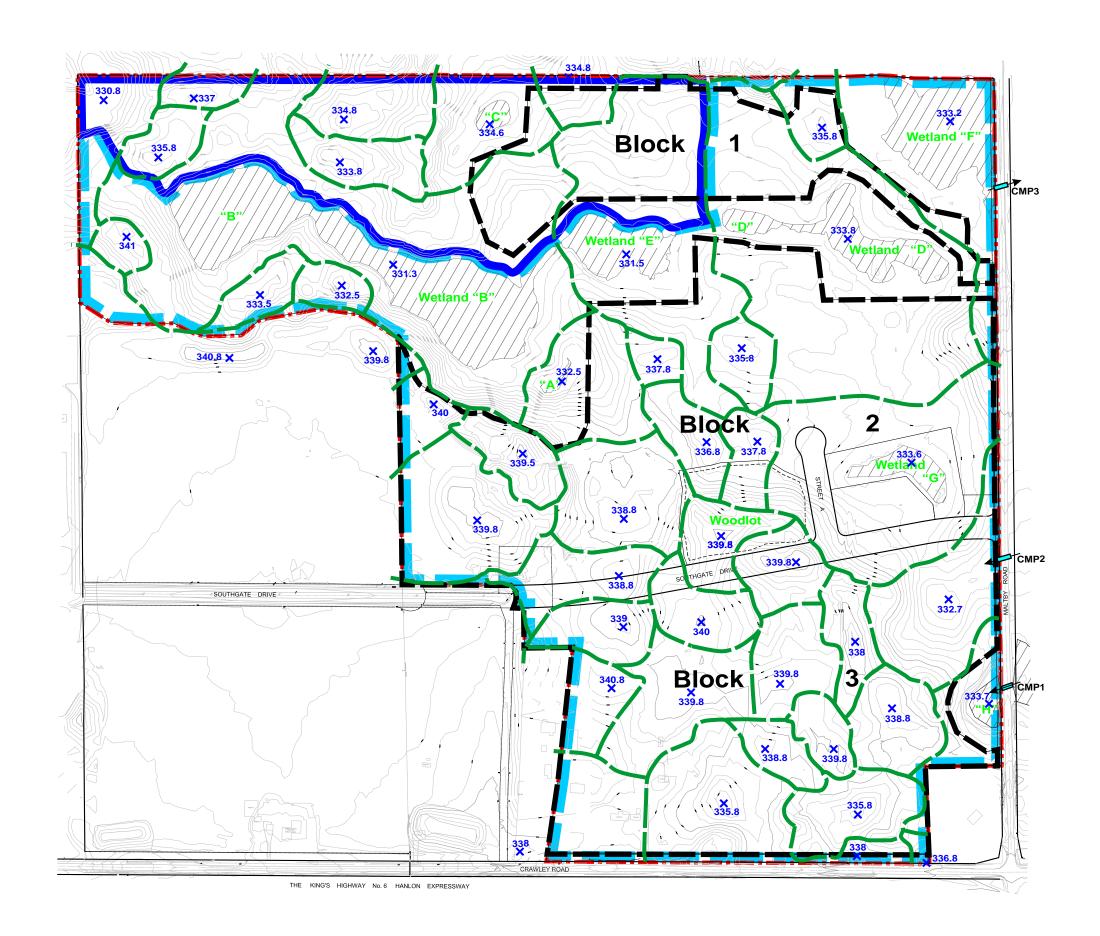

Well Record Well Tag No. (Place Sticker and/or Print Below) Ministry of Intario Regulation 903 Ontario Water Resources Act No TAG the Environment WELL ABANDONMENT. Page of Measurements recorded in: Metric Imperial Well Owner's Information E-mail Address Well Constructed Last Name / Organization First Name Epities Guelph Ltd Partner Ship. by Well Owner ndust Sin Postal Code Telephone No. (inc. area code) Etoloicht MOUGHS 55 Well Location Township Lot Concessio Address of Well Location (Street Number/Name) 14 Pustinde Equiler Province Postal Code ct/Multic Ontario NILIGS Lelph Number Other Northing NAD 8 3 526 84814239 Overburden and Bedrock Materials (Abandonment Sealing Record (see instructions on the back of this form) Depth (m/ft, General Description Most Common Material Other Materials From General Colour NELL HBANDONMENT -63 increte 06 AUATED xa 61 4 DI5005ED 170F **Results of Well Yield Testing** Annular Space Volume Placed (m³/ft³) After test of well yield, water was: Draw Down Recovery ype of Sealant Used Depth Set at (m/ft) Time Water Level Time Water Level Clear and sand free From To (Material and Type) XO1B. (min) (m/ft) (m/ft) (min) Other, specify -67 170 FROU TONITE Static If pumping discontinued, give reason. Level 67 1 1 Pump intake set at (m/ft) 2 2 3 3 Pumping rate (I/min / GPM) Well Use Method of Construction 4 4 Public Domestic Not used Diamond Commercial Cable Tool Duration of pumping Rotary (Conventional) Jetting Municipal Dewatering 5 5 hrs + min Driving Test Hole Monitoring Rotary (Reverse) Livestock Boring Irrigation Cooling & Air Conditioning Final water level end of pumping (m/ft) Digging 10 10 Air percussion Industrial Other, specify Other, specify 15 15 If flowing give rate (I/min / GPM) Status of Well **Construction Record - Casing** 20 20 Inside Open Hole OR Material Wall Depth (m/ft) Water Supply Recommended pump depth (m/ft) Diameter (Galvanized, Fibreglass, Concrete, Plastic, Steel) Thickness Replacement Well 25 25 From To (cm/in) (cm/in) Test Hole Recommended pump rate (//min / GPM) 30 30 Recharge Well Dewatering Well 40 40 Observation and/or Well production (I/min / GPM) Monitoring Hole 50 50 Alteration (Construction) Disinfected? Ves DNo 60 60 Abandoned, Insufficient Supply Map of Well Location Construction Record - Screen Abandoned, Poor Please provide a map below following instructions on the back Outside Depth (m/ft) Water Quality Material (Plastic, Galvanized, Ste Diamete (cm/in) D Slot No Abandoned, other From To specify Construction Other, specify Water Details **Hole Diameter** Water found at Depth Kind of Water: Fresh Untested Depth (m/ft) Diamete (cm/in) From (m/ft) Gas Other, specify Water found at Depth Kind of Water: Fresh Untested (m/ft) Gas Other, specify Water found at Depth Kind of Water: Fresh Untested (m/ft) Gas Other, specify Well Contractor and Well Technician Information Business Name of Well hr 266 ness Address (Street Number/Name) Annen Comments Postal Code letunoron RAS #7 A rovince Well owner's information Date Package Delivered Ministry Use Only anT. N14652 Audit No. Bus.Telephone No. (inc. area code) Name irst Name) package delivered YYYMMD **z**113986 Hannen 5197638239 Well Technician's Licence No. Signe Henry Date Work Completed Yes Date Submitted JUL 2 9 2010 CNO 0 59 0 20100701 20/006/5 Ministry's Copy

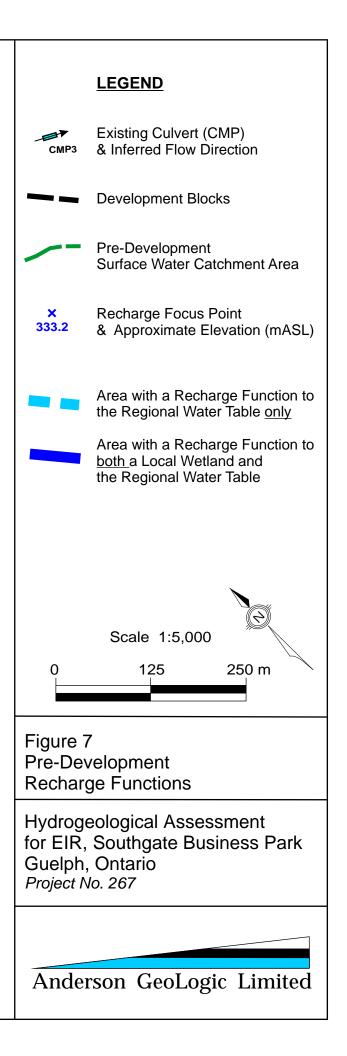

0506E (2007/12)

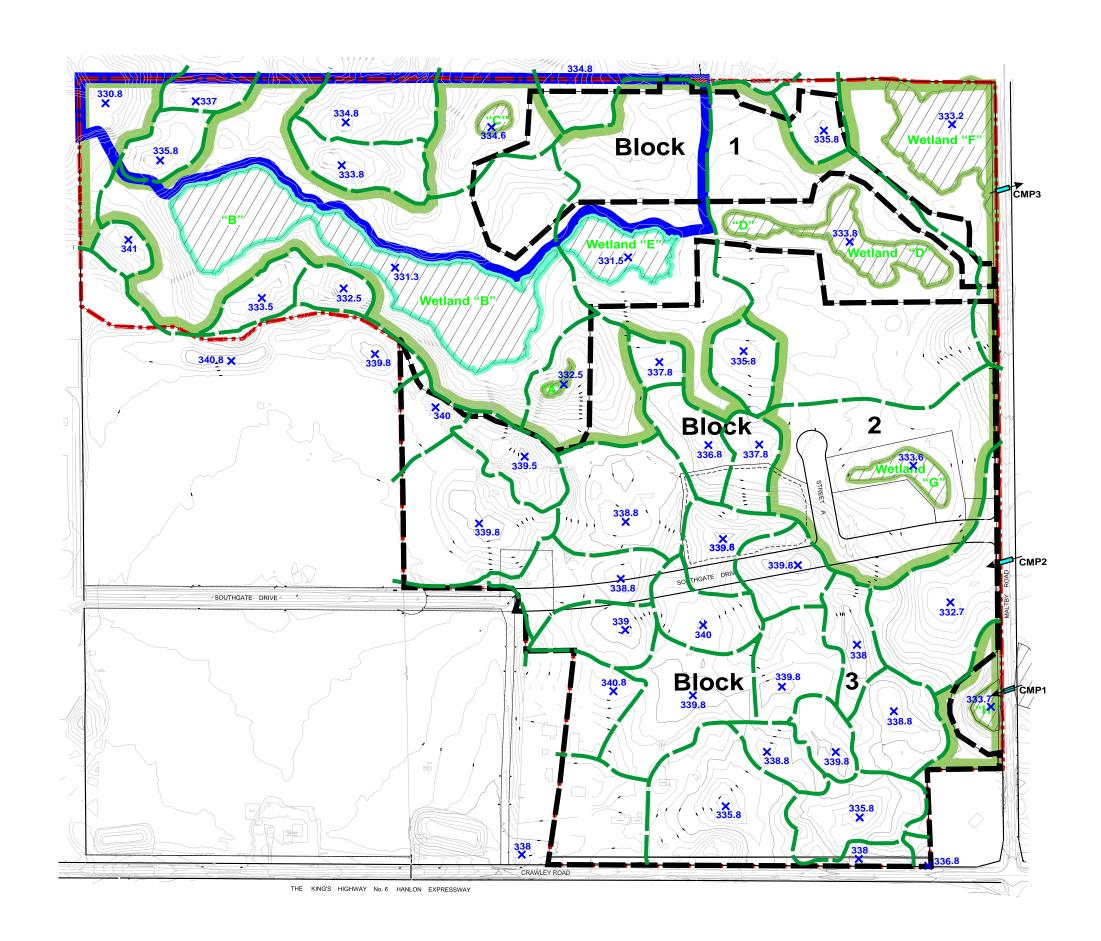
@ Oue

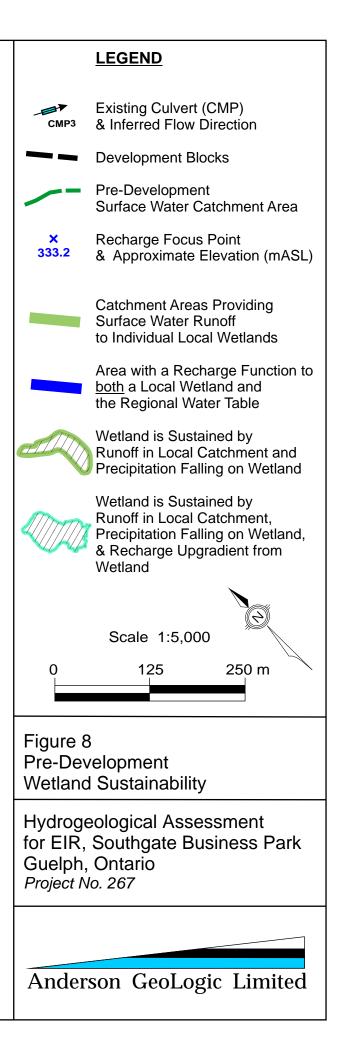

APPENDIX C: EXCERPTS FROM PREVIOUS HYDROGEOLOGICAL STUDY (ANDERSON 2010)





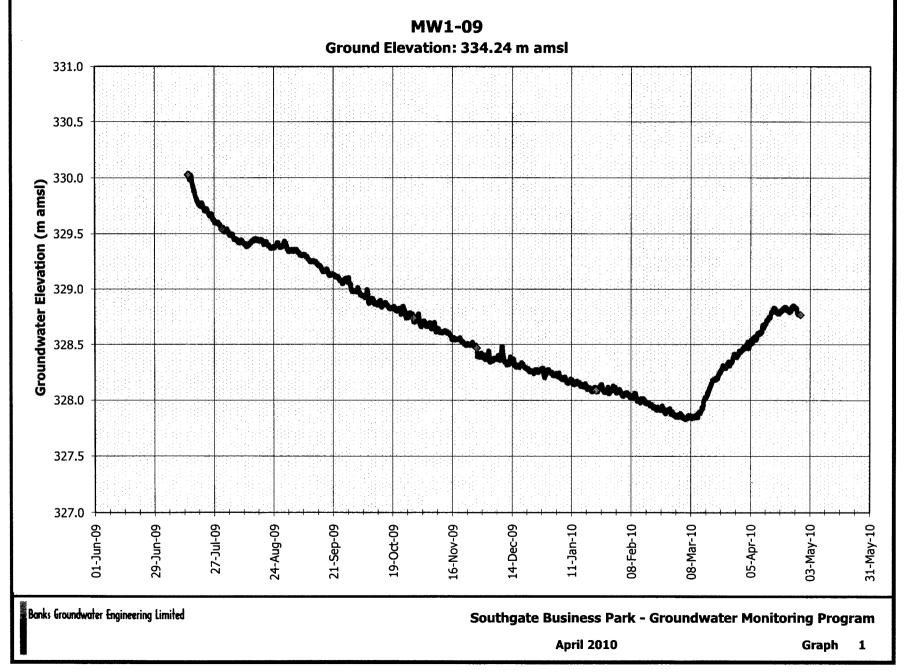

		LEGEND
	327.66	November 30, 1994 Water Table Elevation - mASL
	[328.29]*	November 27, 1997 Water Table Elevation (mASL)
	{325.2}	December 15, 2007 Water Table Elevation (mASL)
1) 1)	(331.15)	March 8, 2010 Water Table Elevation (mASL)
	*	Note: Nov 1997 Elevations Not Strictly Used in Contour Interpretation (0.2 to 0.6 m higher than other "lows")
	[dry<331.89]	November 27, 1997 Surface Water Elevation (mASL)
	(334.75) (334.6)	March 8, 2010 0.5-m &1.0-m Piezometer (s&d) Water Elevation (mASL)
	205	Interpreted "Low" Water Table Contour (mASL)
		Interpreted Groundwater Flow Direction
.4) .3)		Scale 1:5,000
	0	125 250 m
4.7) 4.65)	Figure 4 Interpret Configur	ed 'Low' Water Table ation
}		
	Anders	son GeoLogic Limited



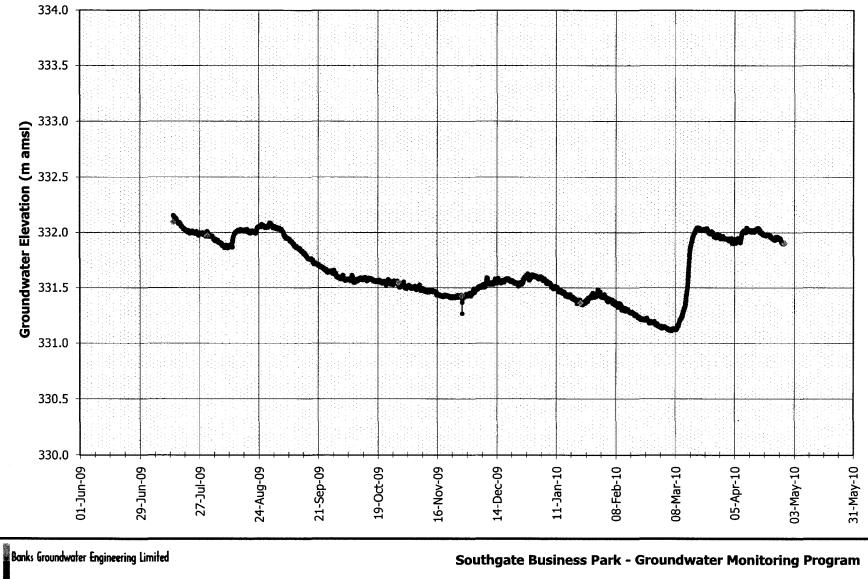

		LEGEND
	327.66	June 2, 1997 Water Table Elevation - mASL
	[328.29]*	July 21, 1997 Water Table Elevation (mASL)
	{327.0}	April 25, 2007 Water Table Elevation (mASL)
3.03) 3.04)	330.10	June 5, 2009 Water Table Elevation (mASL)
	(329.92)*	July 15, 2009 Water Table Elevation (mASL)
	*	Note: July 1997 & 2009 Elevations Not Strictly Used in Contour Interpretation (0.2 to 0.4 m lower than other "highs")
	[dry<331.89]	July 21, 1997 Surface Water Elevation (mASL)
	(334.75) (334.6)	July 30, 2009 0.5-m &1.0-m Piezometer (s&d) Water Elevation (mASL)
	205	Interpreted "High" Water Table Contour (mASL)
		Interpreted Groundwater Flow Direction
33.05) 32.9)		Scale 1:5,000
	0	125 250 m
334.22) 334.20)	Figure 5 Interprete Configure	ed 'High' Water Table ation
.0}		
	Anders	son GeoLogic Limited

Borehole and Monitor Installation Log

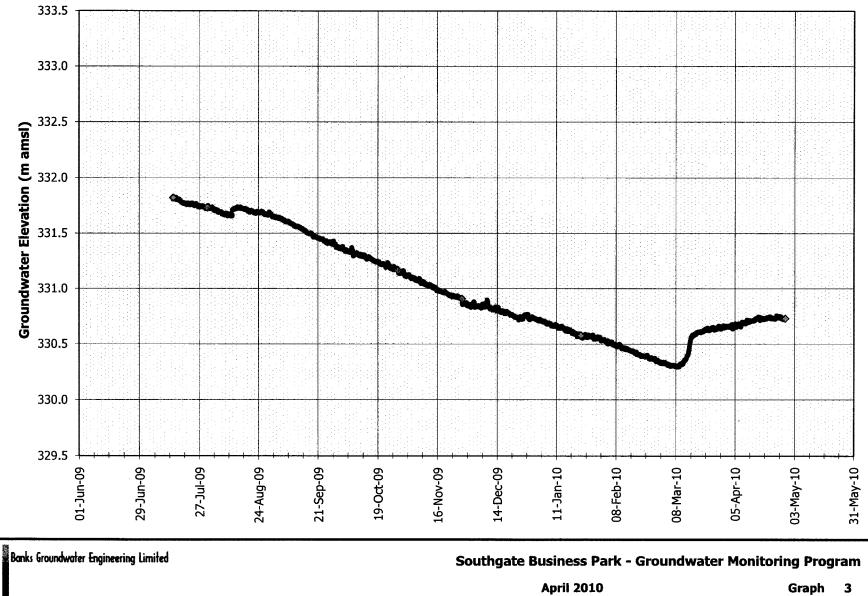
Southgate Business Park, Phase 2 Maltby Road and Crawley Road Guelph, Ontario Date Completed: 13-Jul-09 Drilling Method: H.S.A. Oversight By: WDB Banks Groundwater Engineering Limited

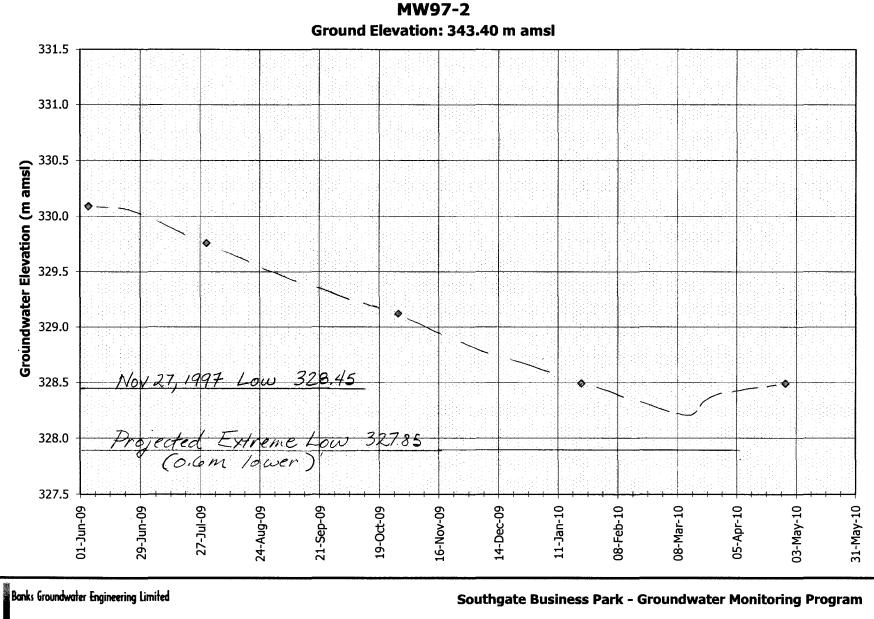

Monitor Number: MW1-09

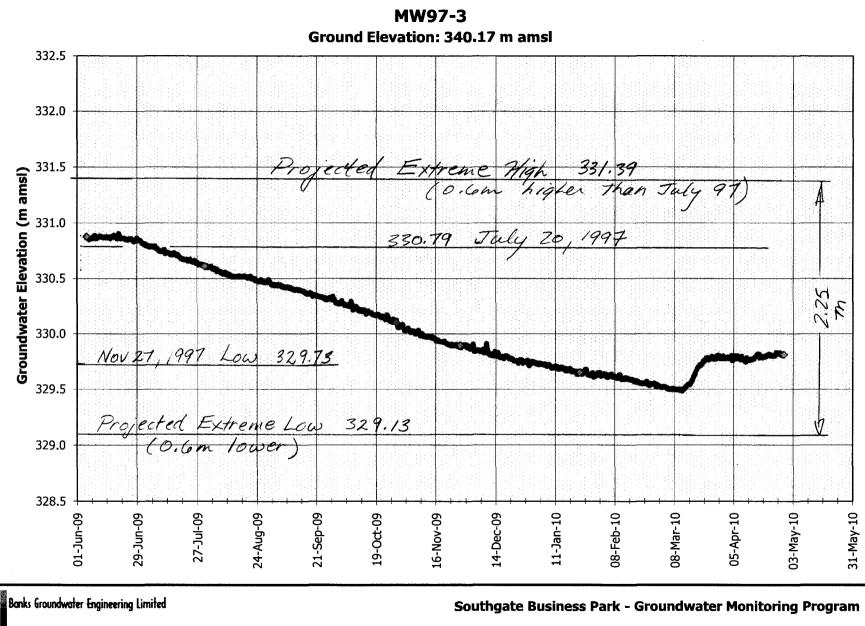
Depth (m bgl)	Stratigraphic Description	Sam	pling	I	Elevation (m amsl)		
				[r		_ Locked, steel protective	335.23
0		Number	Туре			casing	334.24
	Topsoil					— Concrete	
1	Sand and gravel, with silt and minor clay, tan with some grey, moist					50 mm diameter, Schedule 40 PVC monitoring well casing	
2		1	SS				
3	Sand and gravel, with stones, silt and minor clay, grey, saturated					 Bentonite seal 	
		2	SS				
4	Clay with minor stones, yellowish changing to buff, saturated					Groundwater level	
5		3	SS		•	30-Jul-09	329.54
6	Sand and gravel, with some stones, buff, saturated						
		4	SS			— Coarse silica sand pack	
7						50 mm diameter,	
8	Silty fine sand, with gravel and stones, saturated	5	SS			 Schedule 40 PVC, 10 slot well screen, 6.1 to 9.1 m 	
9							325.10
		6	SS		•	_ Caved material from borehole	
10	Borehole terminated at 9.75 m						


Southgate Maltby Ro	e and Monitor Installation Log e Business Park, Phase 2 pad and Crawley Road	Drilling	ompleted: Method:	H.S.A			Banks Groundwater Engin	-
Guelph, C Depth (m	Ontario Stratigraphic Description		rsight By: pling		Mor	itor I	MW2-09	
bgl)	••••••••••••••••••••••••••••••••••••••		-			_		(m amsl)
						┲┨	_ Locked, steel protective	335.69
0		Number	Туре				casing	334.68
	Topsoil						— Concrete	
1							_ 50 mm diameter,	
	Fine to coarse sand, tan, moist						Schedule 40 PVC monitoring well casing	
2		1	SS					
2								
							Consume da en la classica	
					•		Groundwater level 30-Jul-09	331.97
3	Silty sand and gravel, with stones, tan, moist							
		2	SS					
							 Bentonite seal 	
4								
	Silty cand and gravel with stones, tan							
5	Silty sand and gravel, with stones, tan, saturated	3	SS					
6								
						•	— Coarse silica sand pack	
	Stones, possible boulder	4	SS				···· · · · · · ·	
				1				
7				1				
		5	SS				50 1.	
				1			50 mm diameter, — Schedule 40 PVC, 10 slot	
8		6	SS				well screen, 6.1 to 9.1 m	
	Silty sand and gravel, with stones, tan							
	becoming grey at about 8m, saturated			1	\square			
					\blacksquare			
9								226.15
				-				326.15
		7	SS				Caved material from borehole	
		,						
10	Borehole terminated at 9.75 m							

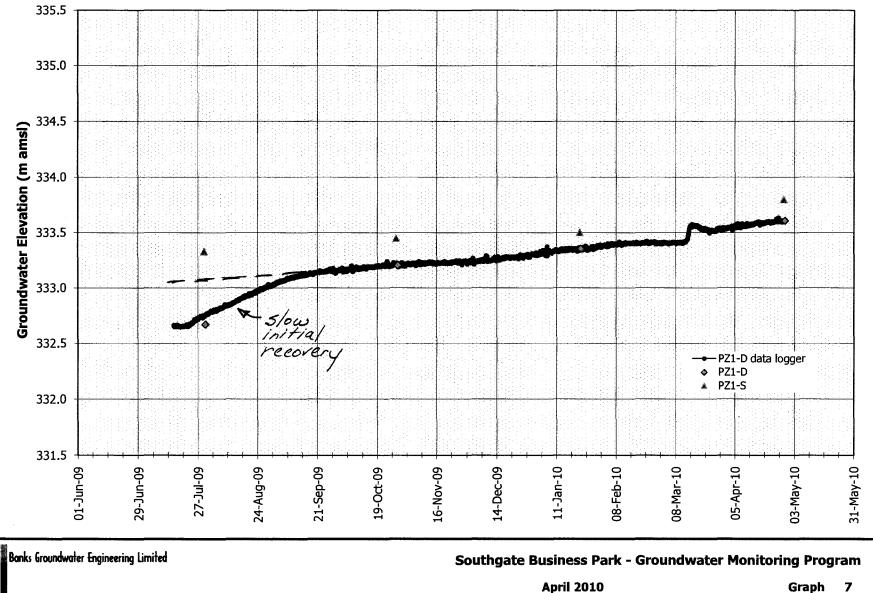
Southgate	e and Monitor Installation Log Business Park, Phase 2		mpleted:				🗸 Banks Groundwater Engin	eering Limited
Maltby Ro Guelph, C	ad and Crawley Road Intario		Method: rsight By:				Monitor Number:	MW3-09
Depth (m bgl)	Stratigraphic Description	Sam		Elevation (m amsl)				
				ſ			_ Locked, steel protective	333.92
0	Topsoil and stones	Number	Туре				casing	332.90
1	Fine to coarse sand, gravel and stones yellow-tan, moist						- Concrete	
					•		Groundwater level 30-Jul-09	331.73
2	Fine to coarse sand, gravel and stones yellow-tan, saturated	1	SS				50 mm diameter, Schedule 40 PVC monitoring well casing	
2							- Bentonite seal	
3		2	SS	211111				
4								
5		3	SS	-			50 mm diameter, Schedule 40 PVC, 10 slot	
	Medium to coarse sand, with gravel and stones, grey, saturated			_			well screen, 4.3 to 7.3 m	
6		4	SS	_		ł	— Coarse silica sand pack	
7				-				
								325.58
8		5	SS				 Caved material from borehole 	
	Borehole terminated at 8.23 m				~~~~			
9								
10								

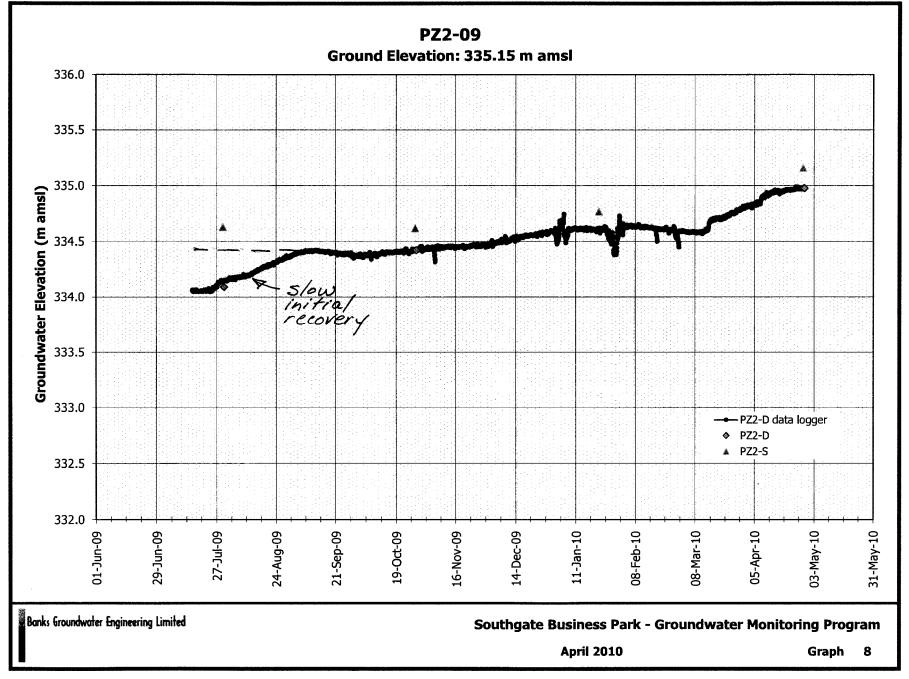

٦



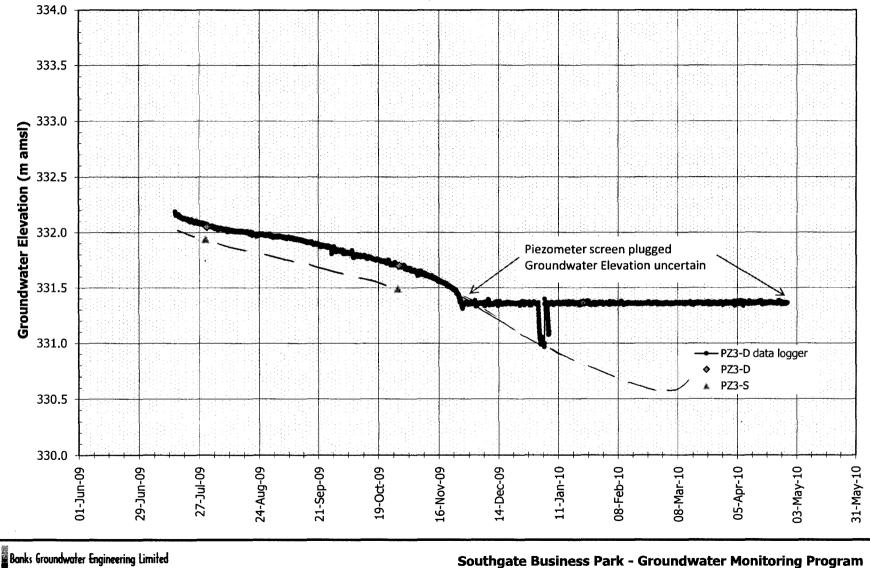

MW2-09 Ground Elevation: 334.68 m amsl

MW3-09 Ground Elevation: 332.90 m amsl

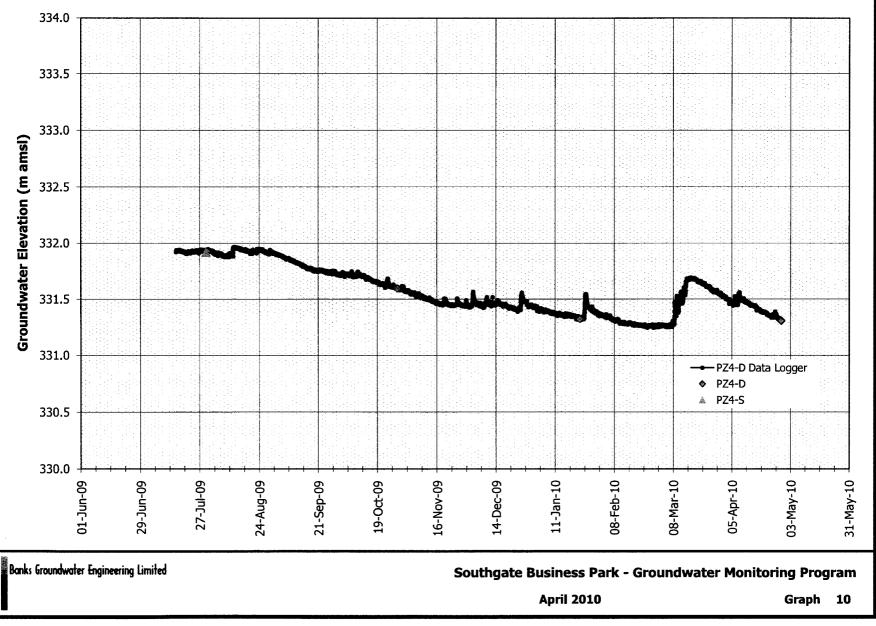


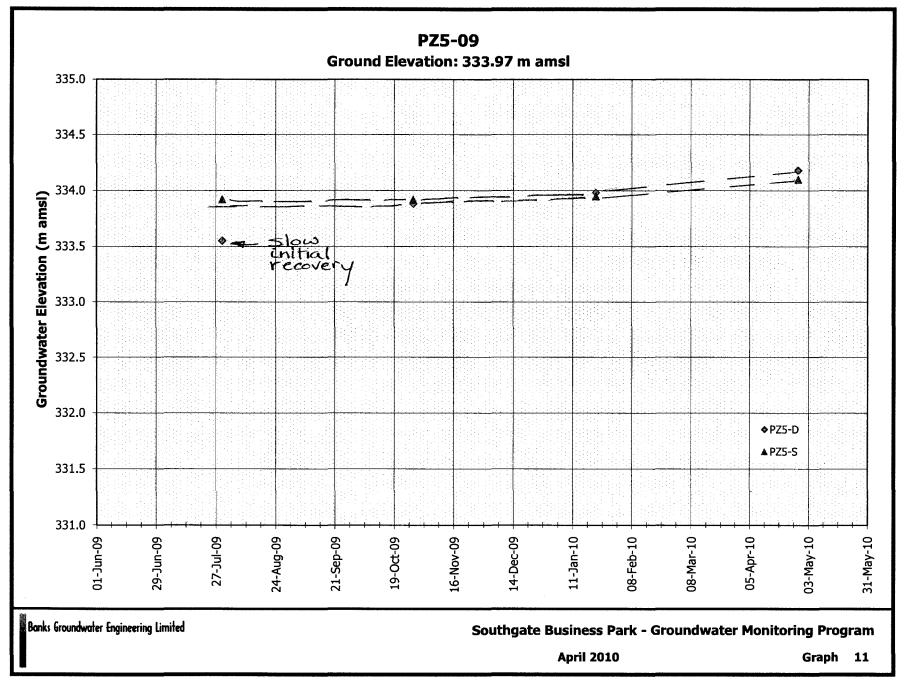


April 2010


MW97-5 Ground Elevation: 336.36 m amsl 333.0 Projected Extreme High 332,45 (0.75 m higher) than July 97 33169 July 20, 1997 332.5 332.0 Groundwater Elevation (m amsl) 331.5 ٤ 331.0 00 . N Nov 27, 1997 Low 330. 42 330.5 330.0 Projected Extreme Low 329.42 10.8 m lower than NOV97; 329.5 329.0 27-Jul-09 21-Sep-09 24-Aug-09 19-0ct-09 01-Jun-09 29-Jun-09 11-Jan-10 08-Mar-10 05-Apr-10 03-May-10 31-May-10 16-Nov-09 14-Dec-09 08-Feb-10 Banks Groundwater Engineering Limited Southgate Business Park - Groundwater Monitoring Program

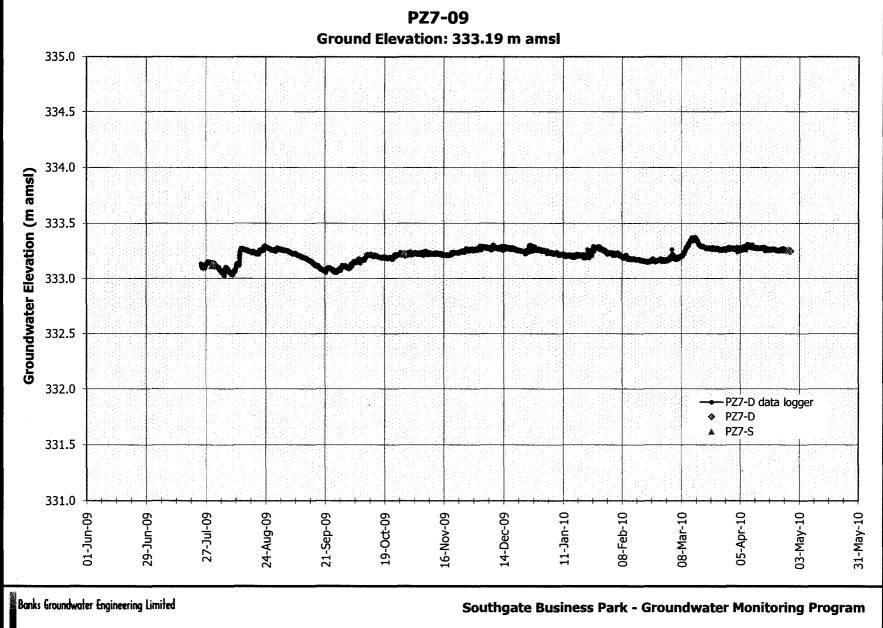
PZ1-09 Ground Elevation: 333.67 m amsl

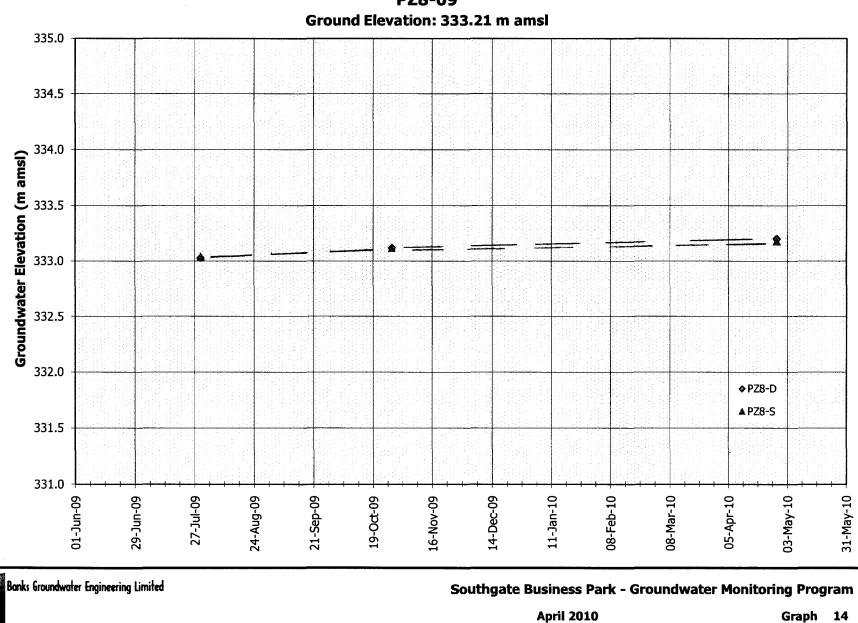




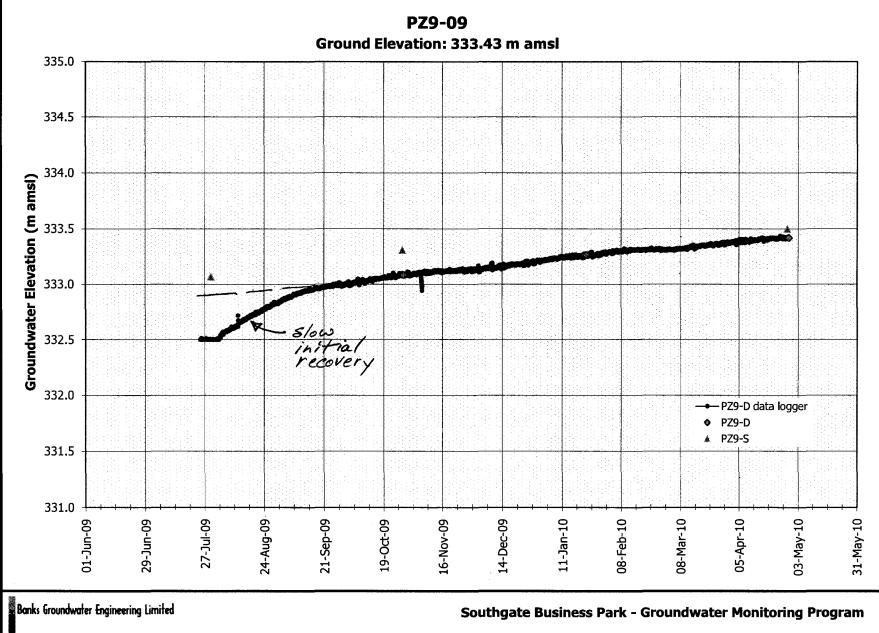
PZ3-09 Ground Elevation: 331.99 m amsl

PZ4-09 Ground Elevation: 331.95 m amsl

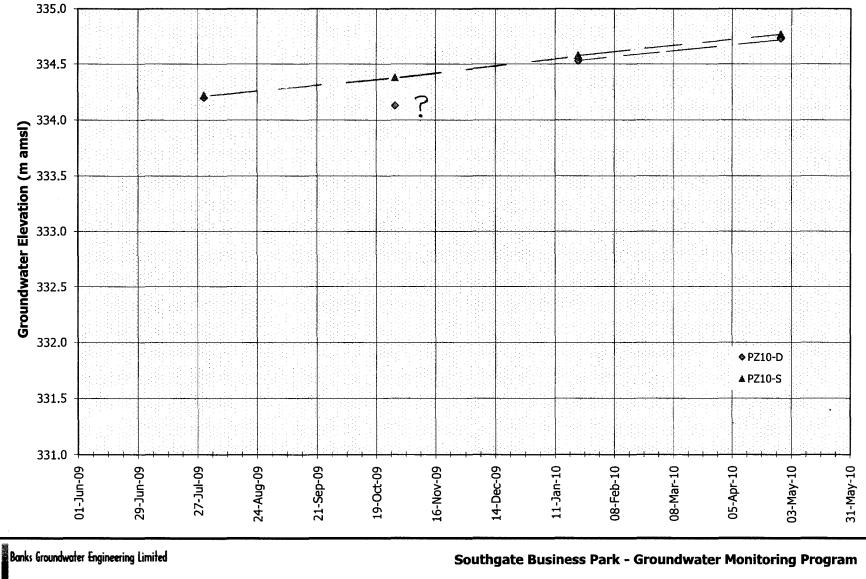




Ground Elevation: 333.34 m amsl 335.0 334.5 334.0 Groundwater Elevation (m amsl) 333.5 333.0 332.5 slow recover 332.0 ♦PZ6-D A PZ6-S 331.5 331.0 27-Jul-09 05-Apr-10 03-May-10 31-May-10 01-Jun-09 29-Jun-09 24-Aug-09 21-Sep-09 11-Jan-10 08-Mar-10 19-0ct-09 16-Nov-09 14-Dec-09 08-Feb-10 Banks Groundwater Engineering Limited Southgate Business Park - Groundwater Monitoring Program


PZ6-09

April 2010



PZ8-09

PZ10-09 Ground Elevation: 334.72 m amsl

BORE	HC	DLE LOG	PROJECT:	93-509				В	OR	EH	OLE	: 2-I	1	of 3
Hanlon	Roa	dfill Site Search d, Guelph Ontario of Guelph						G		LO	10 GIST		er 199 2 m AS	
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHI	C DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	TYPE	N UALUE	× WATER	% REC	X RQD		VALUE 30 45 60	WA CON (%	TEN 6)
0.2 1 2 3 4 5 6.1 6 7 8 7 10 11 12 13 14 15 15		TOPSOIL Dark brown sandy silt, rootl SANDY SILT TILL Brown sandy silt, trace fine very dense. -Occasional boulders and gr 2.6 to 4.0 m. -Becoming reddish brown w subangular gravel below ab -Reddish brown silty clay fr GRAVELLY SAND TO SAN Light brown fine to coarse si moist, dense to very dense. -Medium to coarse sand, son about 9.1 to 9.8 m. -Increasing sand fraction be -Red fine sand, occasional g from about 11.5 to 12.2 m. -Increase in gravel fraction is below about 12.2 m.	gravel, moist, compact to avel from about ith subrounded to out 4.0 m. om about 5.5 to 6.1 m. <u>VD</u> and and gravel, some silt, ne fine gravel from low about 11.0 m. ravel, trace silt		7 8 9 10 11 13 14 15 16 -17 18 19 20 21 20 21 22 23 24 24 25		12 14 32 52/ 408n 52/ 49 30 37 61 49 30 37 61 44 40 44 29 62 45 40 65 25 64 87 70 86 102	18 13 7.3 12 9 10 10 7 9 11 7 8 7 8 9 9 9 9 6 9	63 75 58 100 27 100 75 71 58 54 38 46 21 38 46 21 38 33 75 13 38 25 46 42 71 71 75 92	-				
16 - 17.1 17 18 19 -	9° °	SAND Reddish brown fine to coarse trace silt, compact, saturate -Becoming brown medium s subrounded gravel, uniform	d. and, occasional			SS PQ PQ		10 21 9 22	67 88 73 92				A	
		about 18.3 m.	•			PQ PQ		20 20	58 73					

1 1 1

. d

'__ '

, ^ 0

-4

ũ

٤__

4_

Q,

Ę .

Υ.

E -

ŧ

--

1 - . 1

-. (_.

ł.

ι,

- '

Gartner Lee Limited

BOREH	OLE LOG	PROJECT:	93-509				В	OR	EHO	DLE:	2-I	2 of	3
-	andfill Site Search	-				,		AT)				er 1994	
	oad, Guelph Ontario ty of Guelph	•								GIST TON	PW 346.2	m ASL	
					s	AM	PLE	2					
DEPTH DEPTH (m)	STRATIGRAPHIC DE	ESCRIPTION	MONITOR OETAILS & NUMBER		HAN	VALUE	WATER	.	_	N V.	ALUE	WATE CONTE	
STRAT (m)			ΣΟ J	NUMBER	TYPE	N UA	× we	% REC	% RQD	15 30	45 60	(%) 10 20 30	40
20.3	SILT TO SANDY SILT			33	PQ		21	100				Å	
21 -	Grey silt to fine sandy silt, satura	ted, dense.		34	PQ		20	63	-			A	
22 -		·							-				
23.3 23		•• ·		r 🕅	PQ		23	100	-				
24 -	-Silty fine sand from about 23.3 to	o 25.6 m.			PQ PQ		21 18	100 80					
25 -		· .			PQ		23	100				A	
25.6		• •		39	PQ		28	100	-			A	
27 -							ŕ						
				40	PQ		18	100		_		A	
28 -					PQ		 19		-			Ă	
29 -	-Becoming reddish with trace clay m.	Pelow about 28.7		41	FQ		19	100	1				
30 -	-Becoming laminated with reddisl	, grey clay		42	PQ		20	100	-			Å	
31 -	below about 30.2 m.			-					-				
32 -	· ·			_ 43	PQ		10	93	-			A	
32.8	SANDY SILT TILL			-					-				
34	Dark grey sandy silt, occasional fine cobbles, trace to some clay, moist,				PQ PQ		16 9	54 54				A	1
35				46	PQ		9	33				Á,	
	-Becoming reddish brown below a	bout 35.1 m.		47	PQ		10	90				A A	
36 -				- 48 49	PQ		9	100 100	-				
37								100	, ,				
38				- 50	PQ			27	,				
39.2 39	. DOLOSTONE			-	PC								
Printed: (, <u></u>		51	PQ			83	55			e Limit	

Printed: 8 DEC 94

Gartner Lee Limited

	OLE LOG	PROJECT:	93-509			В	ORI	EHC)LE:	2-I	3 0
Hanlon Ro	ndfill Site Search ad, Guelph Ontario y of Guelph					G	EOI	LOG	10 N SIST ION	₽₩	er 1994 2 m AS
DEPTH DEPTH (m)	STRATIGRAPHIC DE	SCRIPTION	MONITOR DETAILS & NUMBER	NUMBER INTERVAL	SAN N UALUE		X REC	% RQD		45 60	WAT CONT (%
41	Light brown, fine crystalline, thick dolostone, locally porous, minor oc stringers and stylolites. -Very weathered from about 39.2 t	currance of shale		52 1	PQ		100	73	15 30	10 00	10 20 3
	Borehole terminated at 42,42 m in	dolostone.				-				-	
							•				
				.				•			
	· · · · · · · · · · · · · · · · · · ·							•			
									*-		

Printed: 0

🗄 Gartner Lee Limited

•

BOREHOLE LOG PROJECT: 93-509						BOREHOLE: 2-II 1 of 2											
Guelph Landfill Site Search							DATE: 10 November 1994										
Hanlon Road, Guelph Ontario								GEOLOGIST PW ELEVATION 346.4 п									
FOR: City of Guelph									<u> </u>		V A J	TON	ION 346.4 m ASL				
DEPTH B STRATIGRAPHIC DESCRIPTIO				DETAILS 4 NUMBER	SAM				PLI	} []				WATER			
		STRATIGRAPHIC DESCRIPTION			۱œ	NUMBER INTERUAL TYPE		UALUE	WATER	REC	Цар	N VALUE					
					NUMBER		Щ								(%)		
	STF	·		2706 IN 811.00	Ī	F	4 7	ź	×	×	×	15 30 45 60		1	10 20 30 40		
0.2		Dark brown sandy silt, rootlets, moist.				ļ	ļ										
1 -		SANDY SILT TILL			-				ļ		-						
2 -		Brown sandy silt, trace fine gravel, moist, compact to very dense.			ŀ		1			•							
~ L		· · ·			•			l									
3 -		-Occasional boulders and gravel from about 2.6 to 4.0 m.			-						-						
,								l									
-	łĴ	-Becoming reddish brown with subrounded to subangular gravel below about 4.0 m.			Ţ												
5 -	ļ	· · · · · · · · · · · · · · · · · · ·			-						-						
6.1	ţ1	-Reddish brown silty clay from about 5.5 to 6.1 m.															
6.1 6		GRAVELLY SAND TO SAND												1		ľ	
7 -	9 9 9	Light brown fine to coarse sand, some silt and fine gravel, moist, dense to very dense.			-						-					14	
	6 6 6 6								l		ļ						
. 8 -		•									-						
9	0 0 0 0	· · · ·]			-						
		-Medium to coarse sand, some fine gravel from about 9.1 to 9.8 m.							1	ľ							
10 -	\$ \$ \$	adout 9.1 to 9.8 m.				ł					-						
· 11 -	÷.	-Increasing sand fraction below about 11.0 m.			-				l		.					ŀ	
	4 4 4 4	-Red fine sand, occasional gravel, trace silt	::				ļ									1	
12 -		from about 11.5 to 12.2 m.				ł					•					-	
13 -		-Increase in gravel fraction and light grey below about 12.2 m.							ļ		.				~		
	0 0 0 0		::		-												
14 -					-			1			•						
15 -	8 9 9										_						
				÷				ļ									
16	0 0 0 0				ſ											í	
17.1 17	8 8 8			ŧ							l					ĺ	
	•	SAND		ŧ													
18		Reddish brown fine to coarse sand, occasional gravel, trace silt, compact, saturated.		11	r						بر					1	
		-Becoming brown medium sand, occasional		ŧ													
· 19 -	• •	subrounded gravel, uniform, below about 18.3 m.		E	-												
19.8	5 .			ŧ		Ļ				,						<u> </u>	

. ...

Gartner Lee Limited

	EH	DLE LOG	PROJECT:	93-509				В	OR	EHO	OLE: 2-	II 2 of
Hanlon	Ro	ndfill Site Search ad, Guelph Ontario y of Guelph						G		L00	GIST PY	nber 1994 V 6.4 m ASL
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DE	SCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	TYPE 0	N UALUE	X WATER	X REC	х RQD	N VALU 15 30 45 6	(%)
· · · · · · · · · · · · · · · · · · ·		Borehole terminated at 19.86 m in sand. NOTE : Borehole drilled directly t sampling. Stratigraphy inferred fro borehole 2-I.	o 19.86 m without									
		· · ·										
-		<i>.</i>			-							

Pr 3:

}. ∎

🖽 Garther i. a

		LE LOG	PROJECT:	93-509	_	_		– – –	OR	EHO	OLE:	5-I		1 of 2
Hanlon	Roa	dfill Site Search d, Guelph Ontario of Guelph						G		LO	28 1 GIST TION		•	
							SAM							
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC	DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	TYPE	Зŋ	X WATER	% REC	X RQD		ALUE	co	ATER NTEN (%)
0.2		TOPSOL		/	1	SS	7	8	33					
- 1 - 2 -		Dark brown sandy silt, rootlet: SANDY SILT TILL Brown sandy silt with gravel, o compact to very dense.			2	ii SS	18	9	54	_			4	
3					3	IN SS	36	4	63	-		2		-
4 -		-Reddish brown with increasin below about 4.1 m.	g coarse fraction		- 4	SS	65	7	67	-		>>@	4	
5.B 5 -		GRAVELLY SAND TO SAND	•		Б	SS	78	- 4	83	-		》 > > 2	A	
7 -	0 0 0 0 0 0 0 0	Grey fine to coarse sand and fi some silt, occasional cobbles, m dense.			6	SS	68	7	88	-		>>	4	
· 8 -	0 0 0 0 0 0 0 0	· ·			- 7	SS	42	9	58	-		1	A	
10 -	0 0 0 0 0 0 0 0	-Very gravelly from about 10.7	e to 11.7 m.		- 8	SS	105	19	92	-		> >冒		A
11 -	6 0 0 6 0 0				L					-		>>@	4	
12 - 13 -	0 0 0 0 0 0 0 0	-Becoming brown with decrease about 12.1 m.	e silt content below		- 0	SS	78	5	96					
14 -	6 6 6 6 6 6 6 6				10	SS	48	12	67				A	
15 -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$				-11	2 ss	53	9	83	-		3	A	
16 -	0 0 0 0 0 0 0 0 0	-Medium to coarse sand with s about 16.2 m.	ome gravel below	tyka aya	12	SS	38	18	83	.	-			A
17 - 18 -		SAND Grey fine sand, trace silt, satur dense.	ated, dense to very		- 13	SS	78	19	88	بر		>> 🕮		4
19				the state	14	E SS	67	16	67	.		>>■		4

.

1

ą

*". •

1

•- .

۰.: د

ł.

BORE	H	DLE LOG	PROJECT: 9	93-509					·B	OR	EHO	OLE:	5-	-I		2 (of 2
Hanlon	Roa	ndfill Site Search ad, Guelph Ontario y of Guelph							G		LO	28 1 3151 10N					
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DES	SCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	түре	MA MALUE N VALUE	X WATER	% REC	א געם		ALU		C	DNT (%)	ER ENT
20.1 21 - 22 -		SILT Grey silt, with clay laminations (-2 fine sand, saturated, dense. -Occasional thin fine sand seams be			-		SS SS	42 47	19 14	96 88	1 1					Á	3
23 - 23.7 24 - 25 -		SANDY SILT TILL Grey sandy silt, some fine to coarse very dense.	gravel, moist,		- 17		SS	39	17	83			8			A	
26 - 27 -					18 - 19 -	塑	SS PQ		5	17 75	-		> >		A		
28 -		-Becoming reddish brown below ab	out 10.0 m				e	72/ .10n		100	-			*************	4		
· 31 - 32 -		-Decoming readish brown below ab	са: 30.0 Ш		22		SS PQ(PQ	104/ .10n		100 100 100	•				4		
32.9 33 - 33.6		DOLOSTONE light brown, fine crystalline, thick t dolostone, porous, occasional styloli Borehole terminated at 33.58 m in o	tes.		24		ΡQ			100	50		······································		**********************		
			·														
											,					*****	
										2			ner			•	•

Gartner Lee Limited

BORE	H	OLE LOG	PROJECT:	93-509		В	OR	EH	OLE:	5-II	1	of l
Hanlon	Roa	ndfill Site Search ad, Guelph Ontario y of Guelph				G	ΈO		29 No GIST TION	₽₩	er 199 5 m A	
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DI	ESCRIPTION	MONITOR DETAILS & NUMBER NUMBER INTERUAL	N NULUE	X WATER	X REC	ג תמט	N VA		CON	%)
b.2 1 - 2 - 3 - 4 - 5 - 5.8 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16.2 16 -		TOPSOIL Dark brown sandy silt, rootlets, m SANDY SILT TILL Brown sandy silt with gravel, occ compact to very dense. -Reddish brown with increasing c below about 4.1 m. GRAVELLY SAND TO SAND Grey fine to coarse sand and fine some silt, occasional cobbles, moin dense. -Very gravelly from about 10.2 to -Becoming brown with decrease si about 12.1 m. Borehole terminated at 16.21 m in sand. NOTE : Borehole drilled directly to sampling. Stratigraphy inferred for borehole 5-I.	asional cobbles, coarse fraction to coarse gravel, st, dense to very 11.7 m. ilt content below									

Printed: 8 DEC 94

ŝ.

ANI.

1.4

Sec.

<u>.</u>

1

R.,,,,

Ľ.,

L___

<u>.</u>___

ς.,

L.....

🗄 Gartner Lee Limited

BOR	EHOLE L	OG	PROJECT:	97-206				В	OR	EHC	LE:	97-1	1	l of 2
	eological Investi Ontario City of Guelph	gation - South Guelph	EIS					G		LOC	21 Ju HST ION	ly 1997 PW 345 1	,- m AS	SI.
					1									<u> </u>
DEPTH (m)	STRATIGRAPHY STRATIGRAPHY	ATIGRAPHIC DESC	CRIPTION	MONITOR DETAILS & NUMBER	NUMBER	TYPE 0	N VALUE	% WATER 73	% REC	c RQD		ALUE	CON (TER TENT %)
		LT TO SILTY SAND TILL		201 63			2	~	~~	*	15 30	0 45 60	10 20	30 40
. 2		ly silt to silty sand till with g			1	₹ GS								
3	Increasingly	e cobbly below about 3 m.			2	X GS	, 							
5					· · · · · · · · · · · · · · · · · · ·					-				
6.1 6		ND TO SANDY SILT	dry.		3	X GS			. 	·				•
B 9		fine sand with some gravel	and cobbles,											
					1									

FOR:		of Guelph				SAM	_		VAT	ION	3	45.1		4.SI
DEPTH . (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	TYPE	LE UE	WATER	REC	RQD		VALU		co	(%
	<u>.</u>			ž			×	*	*	15	30 45	60	10	20
10.4		SAND AND GRAVEL Brown fine to coarse sand with fine to coarse gravel, dry. Becoming fine to medium sand with some fine gravel below about 10.7 m.		4	X Gs X									*****
12.2 12	9 9 9 9 9 9 9 9 9 9 1	SANDY SILT WITH GRAVEL AND COBBLES Brown sandy silt with some gravel and cobbles, moist.		5	X X X					-		1		
14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Becoming increasingly gravelly and cobbly below about 13.7 m, wet.		.		-				-				
<u>`</u> 15	20202020			-							•			****
16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·		*			.	 . 		-		********************		
17 17.4	- 0 0 0 0 0 0	Borehole terminated at 17.4 m in sandy silt with gravel.		-			-			· · · · · · · · · · · · · · · · · · ·				
				.										

BORE	HOLE LOG	PROJECT: 97-	-206		-		В	OR	ЕНС	LE:	97-2	1	of 2
_	logical Investigation - South Guelph	EIS					1	AT			ly 1997	. *	
Guelph, C FOR: C	Ity of Guelph						1			IST ION	PW 346.3	m ASI	
			_			4 M	PLE	_					
DEPTH (m)	STRATIGRAPHIC DESC	CRIPTION	DETAILS & NUMBER	NUMBER		N VALUE	% WATER	% REC	א דפט		LUE	WA7 CON7 (%	ENT 5)
	SANDY SILT TILL					-		•	•	15 3	145 60	10 20	30 40
1	Brown sandy silt with some gravel and	cobbles, dry.		15	GS				-				
4.0 4	SAND Brown fine to medium sand, trace to so and some fine gravel, dry.	me cobbles		2	GS	-	·		-		······································		
6 -	Becoming moist below about 5.8 m. No cobbles or gravel below about 5.8 n	n.		3	GS								
7.6 8 -	SILTY SAND TO SANDY SILT TILL Brown silty sand with gravel and cobble			-					-				
				4	GS								

	Dilogical Investigation - South	Gueiph EIS	97-206				BOR DAT GEC	E:	17	July	7-2 1997 PW	, •	2 of 2
-	City of Guelph						ELE					щ	ASL
DEPTH (m)		C DESCRIPTION	MONITOR DETAILS & NUMBER NUMBER	LNTERUAL	SA BA	N VALUE	REC	% RQD		VAL 30 4		C	WATEI ONTEN (%)
	Becoming siltier below about	10.4 m.							15	30 43	00		20 30 4
11		-**											
12 -	SILT Brown silt with trace fine sam	d, moist.		5 🕅	GS			-					
14 -		· ·								······································	*		
15 -	FINE SAND Brown fine sand with some si GRAIN SIZE DISTRIBUTIO Sample 6 15.2 - 15.9 m	•		6 X 1	GS			-					
15.9 16 -	0% Gravel 78% Sand 114 18% Sült 4% Clay		/ ∎ -	X				.					
17.1 17	SANDY SILT Brown sandy silt, dry. SANDY SILT TILL Brown sandy silt with some g			7 X Y	GS				******				,
18 - •	Brown fine to coarse sand and with some cobbles, moist. Becoming wet below about 18	· _ ,											
19.2 19 -	Borchole terminated at 19.2 n	n in sand and gravel.						2-			·		

-

ſ

***** .

P--

P_.

1 · · · ·

--

•

۰.

-.

۳-

.

٠.

۱.

ι

🗄 Gartner Lee Limited

BORE	H	OLE LOG	PROJECT:	97-2	206					В	OR	EHC)LE:	9	97-3		1 (of 2
Hydrogeo	logi	cal Investigation - South Guelph	ElS							a	AT	E:	18 J	July	1997	, -		
Guelph, C										G	EO	LOC	GIST		₽₩			
FOR: C	City	of Guelph								E	LE	AT	ION		340.1	m	ASL	
	¥				~			S	AM	PLE								
	STRATIGRAPHY			БŪ	DETAILS & NUMBER		H			r				7.4.7	* **	1	WAT	I
DEPTH (m)	TIG	STRATIGRAPHIC DESC	LRIPTION	INC	I N	NUMBER	NTERUA	ш	UALUE	WATER	REC	RQD	1 14 1	AL	OE		ONT (%)	
	TRA			ž	ö →	E E	IN	ТҮРЕ	กั พ	ž ž	*	ж И	1					
	S	TOPSOIL				-	Ĥ		~	~		<u> </u>	15	30 4	5 60	10	203	0 40
0.6		Dark brown sandy silt topsoil with cobi	bles.	14.44			ł											
	L 11	SANDY SELT TILL																
1	ŀΰ	Brown sandy silt with some gravel and	cobbles, dry.			ŀ						-						
	[4	Very cobbly sections.																
	ŀ₿					1	X	GS		• •		•						
2	14						M					.						
-	ŀΪ						۵											
	[+]	Occasional layers of silty fine to coarse	sand below '				lÌ											
3 -	ŀIJ	about 2.5 m.					Ц											.,
	Ľ∳		-			2	Ø	GS				-	1					
	ĻΪ						Ž			l	1							
	╞╢			::	-		Π			۰ ۰								
4	h					-)						· ·	
	╏┨																	
	竹	· •					ll											
<u>`</u> 5-	t 🛛					-				l		-						
	-1	•					Ц				l							
	[]						ļ											
6.0 6						_						.						
		SAND AND GRAVEL Brown fine to coarse sand and fine to c	oarse gravel				Ľ										ļ	
		with cobbles, dry.				3	X	GS										
7							X											
		•																
- 4	9 0																	
8															·			
	3						$\ $					'						
8.5				_														
	[#]	SANDY SILT TILL Brown sandy silt with gravel and cobble	es, damp.														·	
9-	- []					-	ļ	<u> </u>				1						
	-					4	X	GS										
	- 11						A									ŀ		
	- TI				: ::		1								<u> </u>			lited

🖽 Gartner Lee Limited

	HOLE LOG	PROJECT:	97-206				В	ORI	ЕНО	LE:		-3		2 of	2
Guelph, On	ogical Investigation - South Guelph mario ty of Guelph	EIS					G		LOG	18 Ju IST ION	P	W	m A	.SL	
DEPTH (m)	STRATIGRAPHIC DESC	CRIPTION	MONITOR DETAILS & NUMBER	NUMBER		N VALUE	X WATER	X REC	X RQD	N V.	ALU 0 45		COI	ATE VTE (%)	N
11 11.9 12 12.6 13 14.0 14 14.5	SAND AND GRAVEL Brown fine to coarse sand and fine to of GRAIN SIZE DISTRIBUTION Sample 6 11.9 - 12.2 m 70% Gravel 28% Sand 2% Silt 0% Clay FINE SAND TO SILT Brown fine sand to silt, saturated. SANDY SILT TILL Brown sandy silt with fine gravel, wet. Borehole terminated at 14.5 m in sandy			- 5 X X X X	GS										

8 San

R.

L

ū.,,

۳

Ь

۔ دھا

BORI	EH	OLE LOG	PROJECT:	97	7-206					B	OR	енс	DLE:	9	7-4		1 0	f 2
		ical Investigation - South Guelph	EIS				•			I	AT	E:	22 J	uly	1997			
Guelph,										1			SIST		PW			
FOR:	City	of Guelph								E	LE	AT	ION		337.3	3 m.	ASL	
-	노			Τ				S	AM	PLE	;							
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESC	CRIPTION		MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	TYPE	N VALUE	% WATER	% REC	% RQD		AL		co	ATI NTE (%)	ENT
0.3 .		TOPSOIL Black sandy silt topsoil with some grav	el damp				Π											
1		SILTY SAND TILL Brown silty fine sand with occasional c some medium sand, dry.		_/					-									
2						1	XXX	GS				-						
4.0		. :				- ·				• • • •		-						
5		SAND Brown fine to medium sand with trace a occasional cobbles, dry.	silt and -			2	XXX	GS		-		-						
6		Becoming fine sand with trace silt , son sand and trace cobbies below about 5.5				-						-					· · · · · · · · · · · · · · · · · · ·	
7 .							XX	GS				-						
8.5		SAND AND GRAVEL					8					-						
9.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Reddish-brown fine to coarse sand and gravel with occasional cobbles, moist. Brown fine to medium sand layer betwee m and 9.1 m, dry.				4	XXX	GS						************************	· · · · · · · · · · · · · · · · · · ·			
		SANDY SILT					1.							11				

Gartner Lee Limited

BOREHO	OLE LOG	PROJECT:	97-206				B	OR	ЕНС	DLE:	97-4	2 of 2
	ical Investigation - South Guelph	EIS					1	AT			ıly 1997	
Guelph, Onta FOR: City	no of Guelph						1			JIST ION	PW 337.3	3 m ASL
	*				5	AM						
DEPTH DEPTH (m)	STRATIGRAPHIC DESC	CRIPTION	MONITOR DETAILS & NUMBER	NUMBER		N VALUE	% WATER	% REC	% RQD		ALUE	WATER CONTENT (%)
	Brown sandy silt, moist.			-		~	••		•	15 3	0 45 60	10 20 30 40
11 12 13.1 13		 -		5	GS		-		-			
	SAND AND GRAVEL											
13.8	Brown fine to coarse sand with fine to moist.	coarse gravel,	<u></u>									
14	SILTY FINE SAND Greyish-brown fine sand to silty fine sa	ind, saturated.	1	-			-		-			
	Borehole terminated at 14.3 m in silty t	fine sand.										
									-			

١.

۰.

E Gartner Lee Limited

BOREI	HOLE LOG	OG PROJECT:			-206				EHC)LE:	97-5	1	of 2
	ogical Investigation - South Guelpl	tion - South Guelph EIS						AT			ly 1997		
Guelph, Or							1			SIST	PW		
FOR: Ci	ty of Guelph						E	LE	VAT	ION	336.	4 m AS	L
	Ē					SAM	PLE	;					
DEPTH (m)	STRATIGRAPHIC DES	CRIPTION	MONITOR DETAILS L NIMBED	NUMBER	INTERUAL TYPE	VALUE	WATER	REC	פטא	N VA	ALUE	CON	TER FENT %)
				Ę	₽ `	z	1	×	×	15 3	0 45 60	10 20	30 40
	SANDY SILT TO SILTY SAND TIL			and set									
	- Brown sandy silt to silty sand with so: - cobbles, damp.	me gravel and							l				
			A DECK					ļ					
, [Silty fine to coarse sand with some fir	e gravel and		-					Ι.				
	occasional cobbles below about 0.9 m	1.		-			-						
	1			1.]					
l t	4			11	X GS	·	•						
2 I				-	Ø] .				
+	1			-	Π		· - 、						
1	Í			:									
	+	:											
3 🗍	+	•		-	.	1		l	•				
	+			:					l				
⊷	Í			:			-						
	· · · ·	·· ·· ·			ŀ								
. " [+			ł	11		il. i	••	ſ.				
	+ ·			2	🕅 GS	; .							
│	Becoming silty fine to medium sand w			:	M	Ì		Ì					
5 -	coarse gravel and cobbles below about	a 4.5 m.]	X		ľ	l	Ι.				
	4			:	11				.				
4-	+			-	11							•	
+	1	۰.		:									
6	1 •				11				Ι.				
				3	🕅 GS	;							
				-	Ŋ								
	1			-	Å								
7				-					.				
7.3	Å			:					1				
j j	Brown fine to coarse sand and fine to			-									
	with cobbles, dry.	coarse gravel		4	G G	5		·					
8				:	X				·				
				:	4								
	Becoming moist, silry sand and grave	below about											
	8.5 m.												
9	*: *:		Ŧ	-					· ·				
	Becoming wet below about 9.6 m.							•					
	a. Decoming wet below 400ut 7.0 in.												
č				:4	1.1								: :

Gartner Lee Limited

BORI	EH	OLE LOG	PROJECT:	97-206	BOR	EHC	DLE:	97-5	2 of 2	
Guelph,	Onta	ical Investigation - South Guelph 1 ario of Guelph	EIS		 DAT GEO ELE	LOC	GIST	ly 1997 PW 336.4	• m ASL	
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESC	RIPTION	MONITOR DETAILS & NUMBER NUMBER INTERVAL TYPE	X WATER 37	ג גמס		ALUE 0 45 60	WATER CONTEN (%)	
11 · 11.6 12.2 12 ·		<u>SAND</u> Grey fine to medium sand, saturated.		J GS		-				
		Borehole terminated at 12.2 m in sand.	· ·							
-										

4

<u>eí_</u>

ø.,

el ___

ه_

-

۹.,

🗄 Gartner Lee Limited

BORI	EH	OLE LOG	PROJECT:	97-206					B	OR	EHC	DLE:	97	-6		l of :	3
Hydroge	ologi	ical Investigation - South Guelph	EIS						r	AT	Ê:	18 J	uly 1	997,	•		
Guelph,												JIST		W			
FOR:	City	of Guelph							E	LE	VAT	ION	34	47.6	mΑ	SL_	
	Υнс				<u> </u>		S	AM	PLE	;							
DEPTH	STRAT І В В А В А В А В А В А В А В А В А В А	STRATIGRAPHIC DESC	CRIPTION	MONITOR DETAILS		E		щ	Ê			NV	ALU	Е	CON	ATE) MTE	
(m)	ΗI					LER	түрЕ	VALUE	WATER	REC	цря					%)	
	STR			1200	٩Ž	H	ТY	z	*	*	X I	15	30 45	60	10 20	0 30	40
	+1	SANDY SILT TO SILTY SAND TILL			1000	ſ											
	μŢ	Brown sandy silt to silty sand with grave cobbles, fine to medium sand, dry.						l									
1	ΓĦ				10.000	ł				1							
1	H 1	·			-) ·								
	⋤╢				:												
	<u>t</u> 1				1	Ň	GS										
2 -	FH	· ,				X					-						
	┣┨	•															
	ΓH							2									
. 3 -	11	Becoming silty fine sand with gravel an	d cobbles		-				<u>،</u> ،	· ·		-					
	ΓH	below about 3 m.			2	X	GS										
	┡┨					X		;*									
4 -	ΓH							:			.						
· · ·	┢┨							ŀ	·								
	[+]				:												
	┢∄																
· 5.2 ⁵ -	Ĩ+				ſ					ļ	-	1					
		<u>SAND</u> Brown fine to medium sand, damp.															·
		•			:												
6.1 6 -		SANDY SILT TILL		-	3	X	GS				'					·	
	F H	Brown sandy silt with occasional cobble	es, damp.			Ø)						ŕ,		
	tΠ				:	X											
7 -	Γł				-			·			-						
	┢╻				-												
	ΓĦ				-						1						
8 -	Ϊ		• .		-												i
	FH																
	十1																
9 -					:-						4						
	┝╢																
	TH.																,
	+1	· · · · · · · · · · · · · · · · · · ·												T	π.		

• .

ortnor I.oo I.imiter

•••••

-	BORE	HOLE LOG	PROJECT:	97-206			В	ORE	HOLE	E: 97-6	2 of 3
₽	Guelph, O	ogical Investigation - South Guelph ntario ity of Guelph	EIS	• •			G		: 18 OGIS ATIO		m ASL
5 5 7	DEPTH (m)	STRATIGRAPHIC DESC	CRIPTION	MONITOR DETAILS & NUMBER	NUTERUAL TYDE	N UALUE	X WATER	% REC	B	VALUE 5 30 45 60	WATER CONTENT (%) 10 20 30 40
	11	Increasingly cobbly below about 10.5 m	m. 		4 X G	-				-	
6	13 - 14 - 14.3 15	SAND Brown fine to medium sand, damp.				-		-	-		
ڙي۔ (16	SILTY SAND TILL Brown silty sand till with gravel and co	obbies, damp.		5 X G. X	5			-		
Ľ L	18						•				
L		Becoming grey-brown in colour below	about 19.5 m.								

🗄 Gartner Lee Limited

BOREH	OLE LOG	PROJECT: 9	7-206			BOR	EHC	DLE:	97-6	3 of 3	
Guelph, Onta	ical Investigation - South Guelph ario of Guelph	EIS				DATE: 18 July 1997 GEOLOGIST PW ELEVATION 347.6 m ASL					
DEPTH (m)	STRATIGRAPHIC DESC	CRIPTION	MONITOR DETAILS & NUMBER	NUMBER		KEC STEC	X RQD		ALUE	WATER CONTEN (%) 10 20 30 40	T
21 21.5 22 23.6	Thin sand and gravel layer at about 21. FINE SAND Brown fine sand, wet.	•		-			-				
	Borehole terminated at 23.6 m in fine s	and.									
											-

	OLE LOG	PROJECT:	97-206							LE:	97-7	1 of	f 2
Guelph, Onta	ical Investigation - South Guelph ario of Guelph	EIS					G		LOG	17 Ju HST ION	ly 1997 PW 347.5	, . 5 m ASL	
(m) (m) (m)	STRATIGRAPHIC DESC								RQD	N V	ALUE -	WATE CONTE (%)	EN
STR	· ·		. 204	ź	TYPE	N VALUE	% WATER	% REC	*	15 3	0 45 60	10 20 30	
	SILTY SAND TO SANDY SILT TILL Brown silty fine sand with some cobble			-									•
2	•	· .		-					-				
3 -1 + + 		· ·			X GS			•					
	Becoming siltier in sections below abou	t 4 m.		-	<u>-</u>				- -			• • •	
5 -{	Becoming damp below about 4.9 m.			-					-				
	• • •			2	X GS								
	Becoming moist below about 7.6 m.			•					-				
8	· ·		,	-									
9 1 1 1 1 1 1 1 1	GRAIN SIZE DISTRIBUTION Sample 3 9.1 - 9.8 m 33% Gravel			3	GS				4				

642

an Alexandre

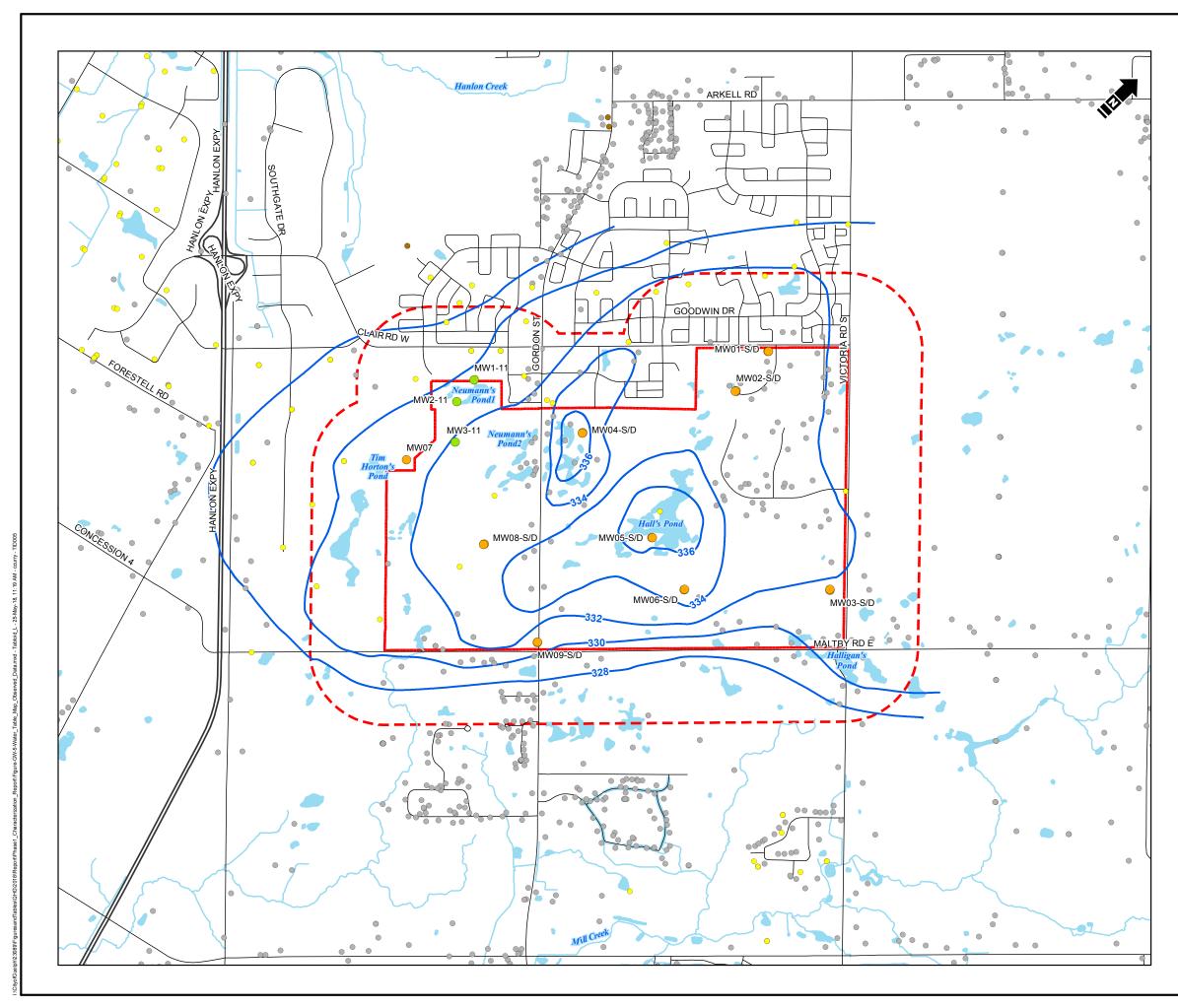
Ŀ

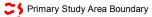
🗄 Gartner Lee Limited

100

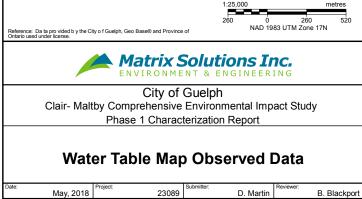
BOREH	IOLE LOG	PROJECT:	97-206		BOR	EHC	DLE:	97-7	2 of 2	2
Guelph, On	gical Investigation - South Guelph tario y of Guelph	EIS			DAT GEO ELE	LOG	FIST	ly 1997 PW 347.5	m ASL	-
(m) PEPTH (m)	STRATIGRAPHIC DESC	CRIPTION	MONITOR DETAILS & NUMBER NUMBER INTERUAL	SAMF	X WATER	х вар		LUE	WATER CONTEN (%)	T
11	40% Sand 22% Silt 5% Clay Silt 5% Clay SAND Brown fine to medium sand, damp to m SAND AND GRAVEL Brown fine to coarse sand with fine to n gravel, damp.	nedium		S						
	Borenoie terminated at 19,3 m in silty sa	and			FI					

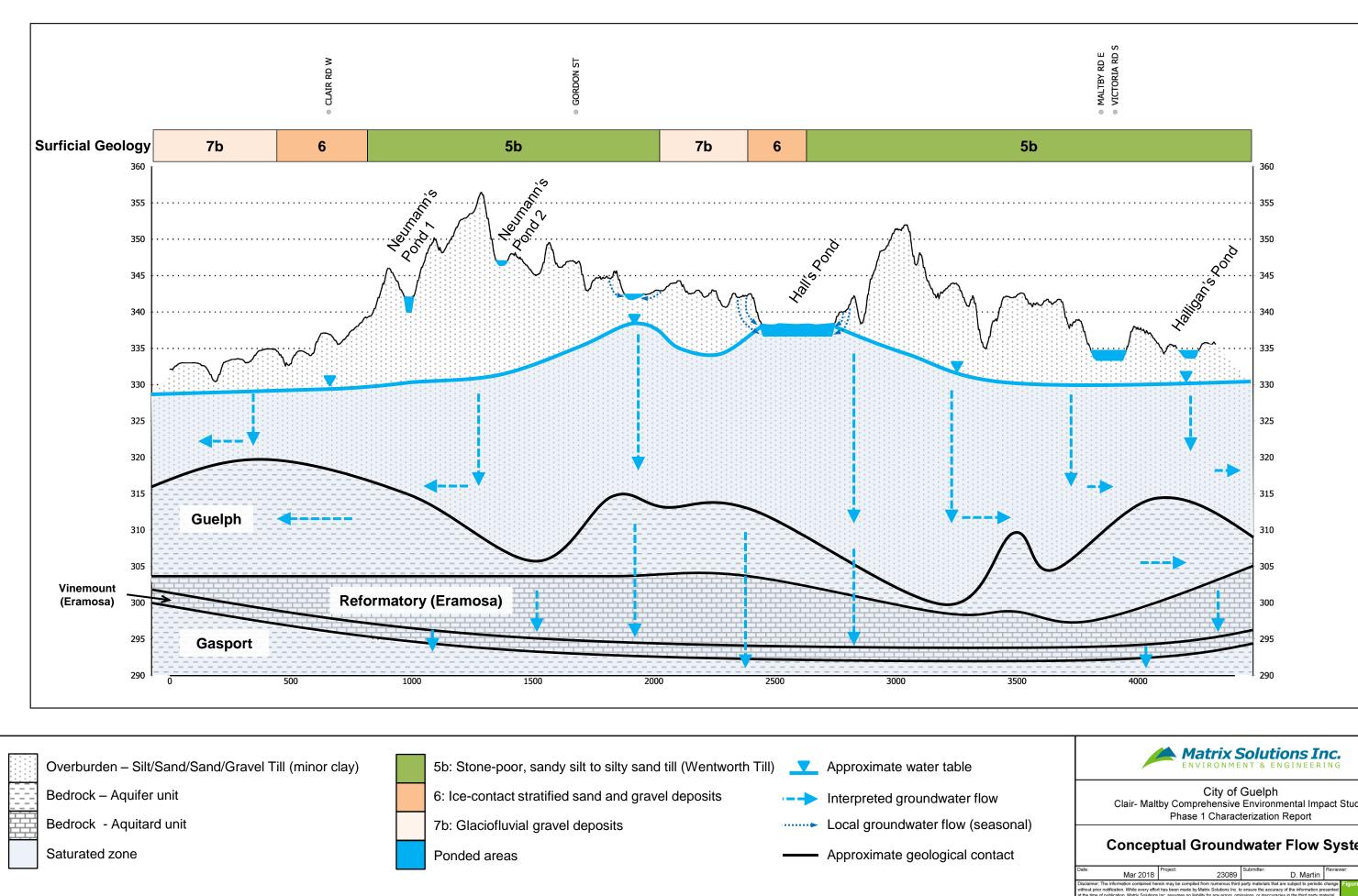
🗄 Gartner Lee Limited


LO	CATION: N 565685.4 ;E 4813871.7									DATUM: Geodetic
DEPTH SCALE METRES	DESCRIPTION	ELEV. DEPTH (m)	CALIPER (cm)	F-RESISTIVITY (Ohr 10 20 30		GAMMA (cps) 20 40 60 80	CONDUCTIVITY (mS/m) 5 10 15 20	BASED ON PACKER TESTING BASED ON K, cm/sec BASED ON	ILIC CONDUCTIVITY RISING HEAD TESTS K, cm/sec 10 ⁴ 10 ⁴ 10 ³	NOTES WELL INSTALLATION WATER LEVELS
- o'	GROUND SURFACE Silty Sand Till	337.37 0.00							Bentonite Seal Cement Bentonite Seal Bentonite Seal	len C B A Bentonite Seal Cement 10 (1) (1) (1) (1) Bentonite Seal
5		325.18			All Flow Readings Under 1 CPS	1			Grout	s -
10	Medium Sand	325.18				Z				
15		317.56							Bentonite Seal Sand Screen	Grout CEI. 324.65 15 · ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
20	Clayey Silt Till	19.81							Measuring Point Elevation: A-338.17 B-338.24 C-338.29	B EL 317.82 20 -
25									C-338.29 D-338.11 Water Level Measurement Date: Jan. 19, 2007	Bentonite Seal 25 - Sand 5creen
30		302.63								Bentonite Seal
35	Guelph Formation Tan to creamy grey, fresh to slightly weathered, moderately porous, fine to medium grained, medium to thickly bedded, medium strong rock, some iron	34.75								Sand Screen 40
45	staining at joints, some wavy angiliaecous bodding, fossiliferous, trace vugs, locally cherty, DOLOSTONE Eramosa Member (Unit 2) Dark brown to blacksift grey, moderately weathered to tesh, thin beddings to medium strong rock, slightly porcus, some vugs, trace subplice crystals, some wavy argiliaecous beddings, bluminous, DOLOSTONE	40.84				A A A A A A A A A A A A A A A A A A A				Bentonite Seal
55 60 65	- Moderately weathered to vuggy from (a0.84m to 36.57m Amabel Formation ightly weathered to tesh fossiliferous, trace wavy anglilacous beddings, fine to medium grained, thinly bedded to thick beddings, some laminations, weak rock, trace vugs, DOLOSTONE	233.12 94.25 94.25 94.25								Grout 80 -
70										70 - 75 - Bertonia Seal
80										Sand BO - Screen
85										Bentonite Seal
90		238.97				A Warran - A				Grout 85
- 100		98.40							+	00
DEI 1:1	PTH SCALE 500					Ø	Golder ssociates			LOGGED: GY CHECKED: SD

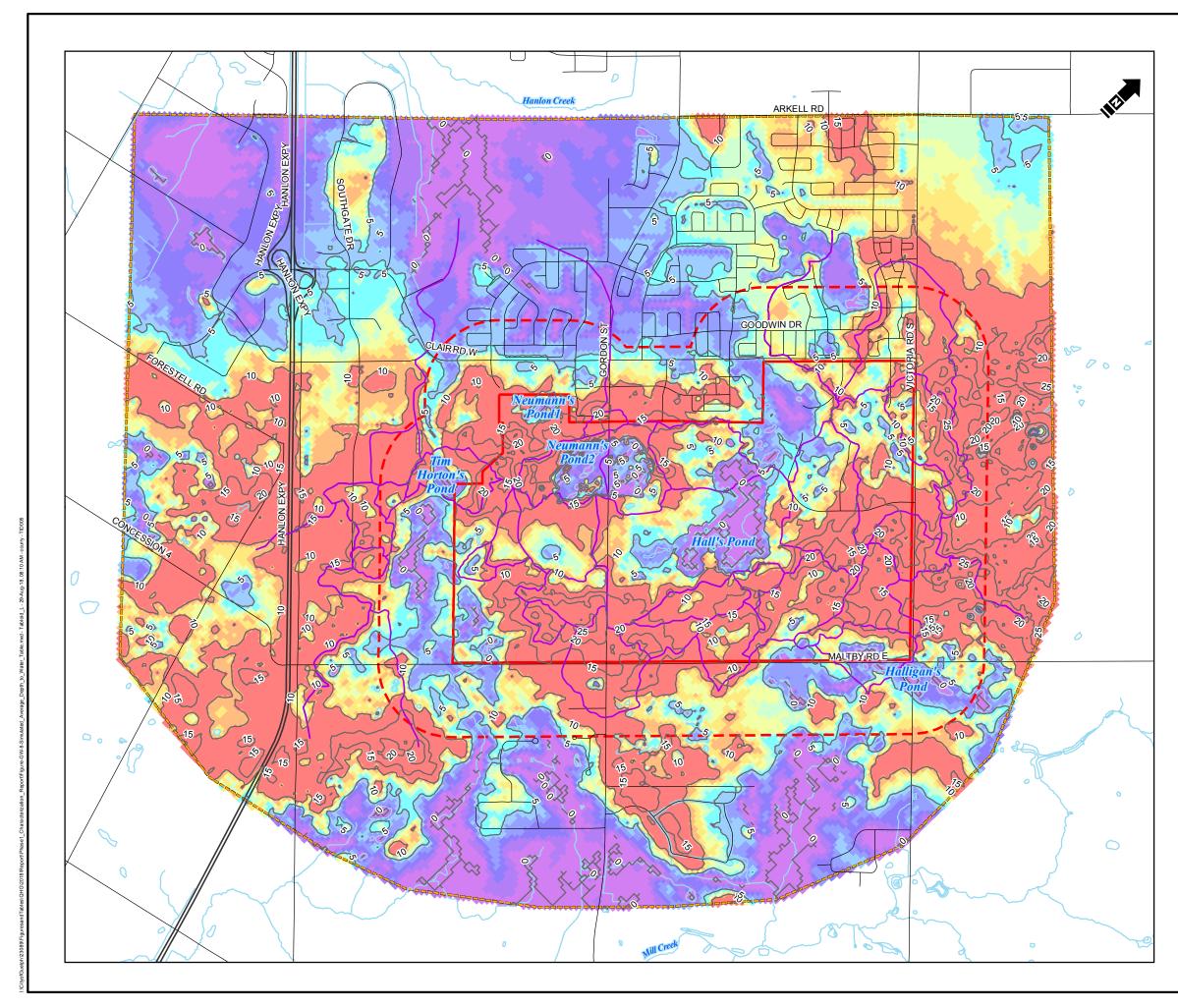

PROJECT: 06-1112-032

RECORD OF DRILLHOLE: MW 06-07

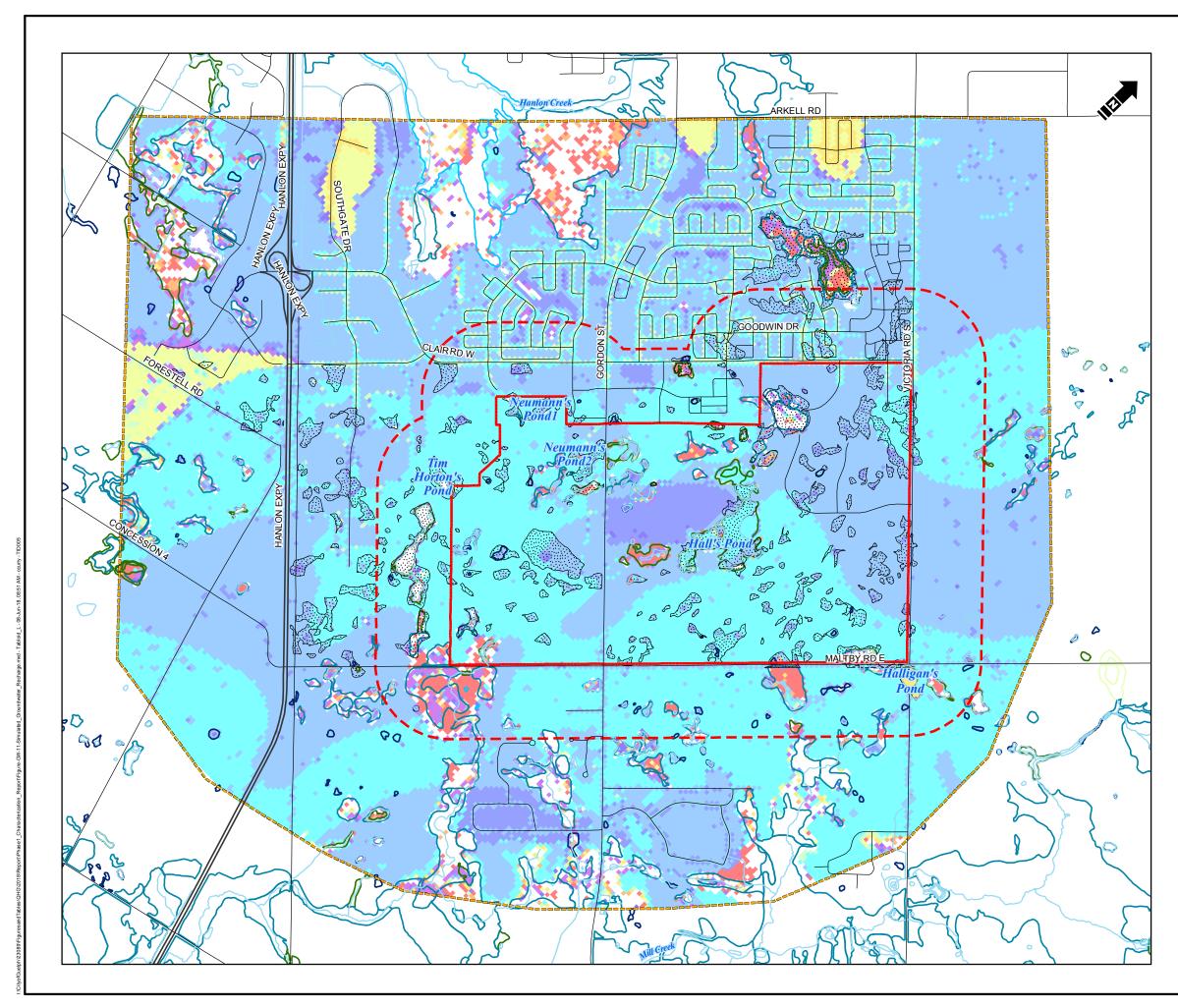

SHEET 1 OF 2


APPENDIX D: EXCERPTS FROM CLAIR-MALTBY SECONDARY PLAN

- 🔀 Secondary Plan Area Boundary
- S Water Body
- Watercourse
- ✓ Water Table Elevation Contour (2m)
- Highway
- ----- Road
- Monitoring Well (Matrix)
- Monitoring Well (132 Clair Rd.)
- Consultant Well
- GPW Well
- WWIS Well



City of Guelph Clair- Maltby Comprehensive Environmental Impact Study


Conceptual Groundwater Flow System

Project:	Submitter:	Reviewer:
23089	D. Martin	B. Blackport
rein may be compiled from numerous third	party materials that are subject to periodic	change Figure
t has been made by Matrix Solutions Inc. t	o ensure the accuracy of the information pro-	esented
Inc. assumes no liability for any errors, om	issions, or inaccuracies in the third party ma	aterial. GW-6
	rein may be compiled from numerous third t has been made by Matrix Solutions Inc. to	Project: 23089 Submitter: D. Martin ein may be compled from numercus third party materials that are subject to periodic thas been made by Matrix Solutions inc. be ensure the accuracy of the information print inc. assumes no lability for any errors, omission, or interactive site in the party m

CS Primary Study Area Boundary	
Secondary Plan Area Boundary	
MIKE SHE Model Domain	
Water Body	
Watercourse	
—— Highway	
Road Average Depth to Water Table Cont	our (5m)
Simulated Average Depth to Water Table Com	
0 - 1	
1-2	
2 - 3 3 - 4	
4 - 5	
5-6	
6 - 7 7 - 8	
8 -9	
9 - 10	
> 10	
	1:25,000 metres 260 0 260 520
Reference: Da ta pro vided b y the City o f Guelph, Geo Base® and Province of Ontario used under license.	260 0 260 520 NAD 1983 UTM Zone 17N
Matrix Solu environment &	tions Inc. engineering
City of Guel	
Clair- Maltby Comprehensive Enviro Phase 1 Characterizat	
Simulated Average Dept	h to Water Table

Date:	Project:		Submitter:		Review	
August, 20	18	23089	[[D. Martin		B. Blackport
Disclaimer: The information contain						Figure
without prior notification. While eve at the time of publication, Matrix So						GW-8

C Primary Study Area Boundary Secondary Plan Area Boundary Closed Depression 💋 Fen Bog Swamp SMarsh Open Water Unknown Wetland S Water Body ----- Watercourse - Highway ----- Road

Groundwater Recharge (mm/year)

- **K** 0 50 50 - 100 **K** 100 - 150
- 150 200
- 200 250
- 250 300 300 350
- 350 400
- **400 450**
- 450 500
- **5**00 × 500

Reference: Da ta pro vided b y the City o f Guelph, Geo Base® and Province of Ontario used under license.

1:25,000

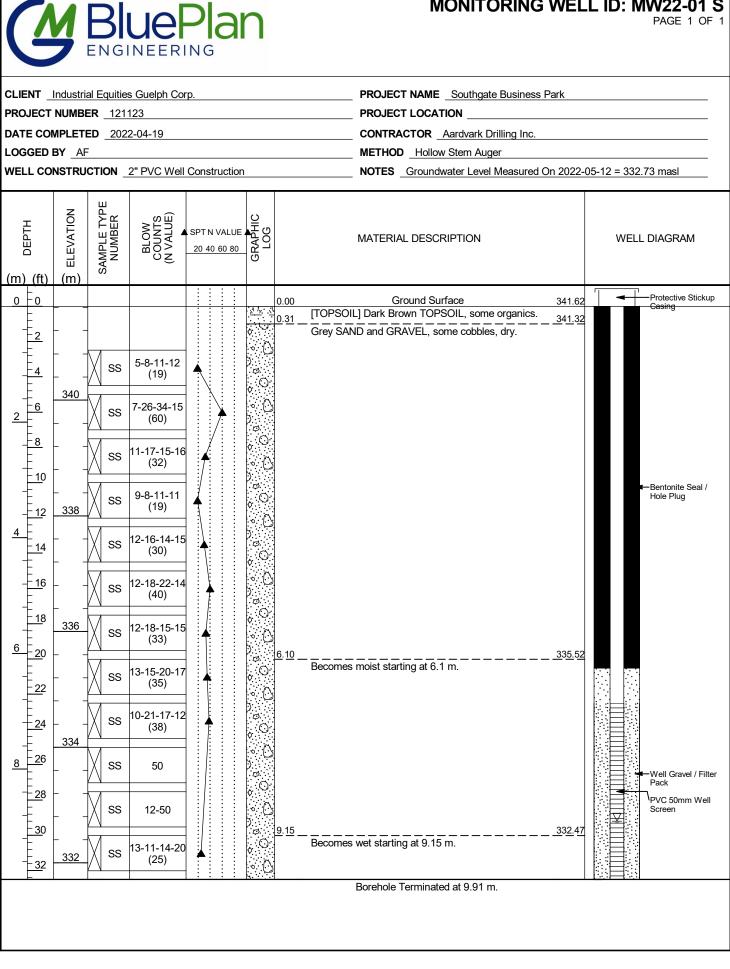
0 260 NAD 1983 UTM Zone 17N

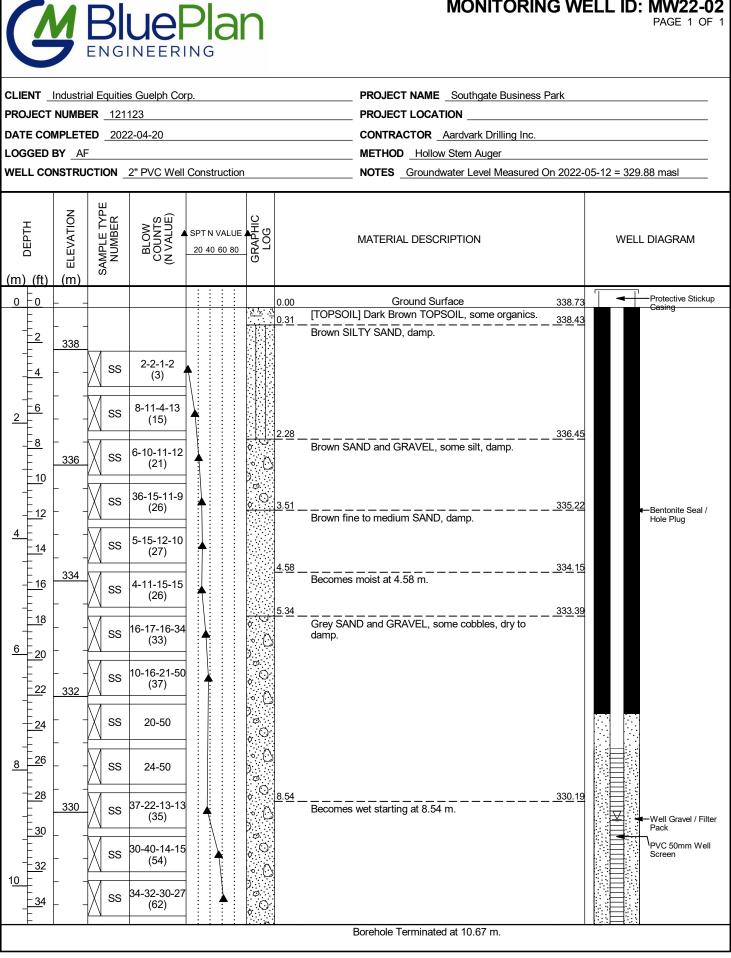
City of Guelph Clair- Maltby Comprehensive Environmental Impact Study Phase 1 Characterization Report

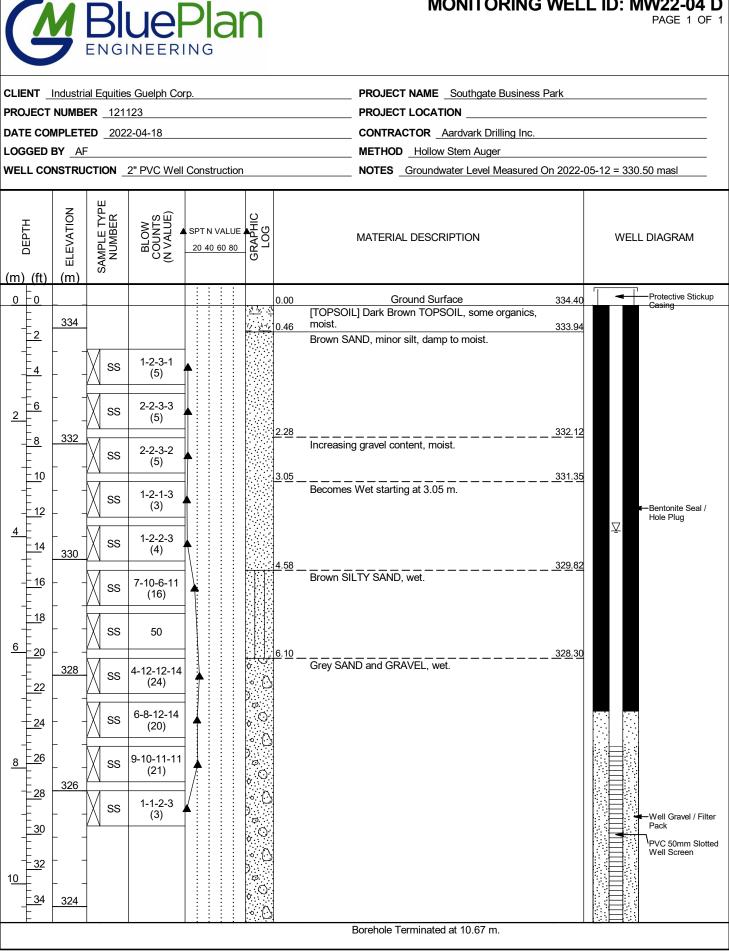
Simulated Groundwater Recharge

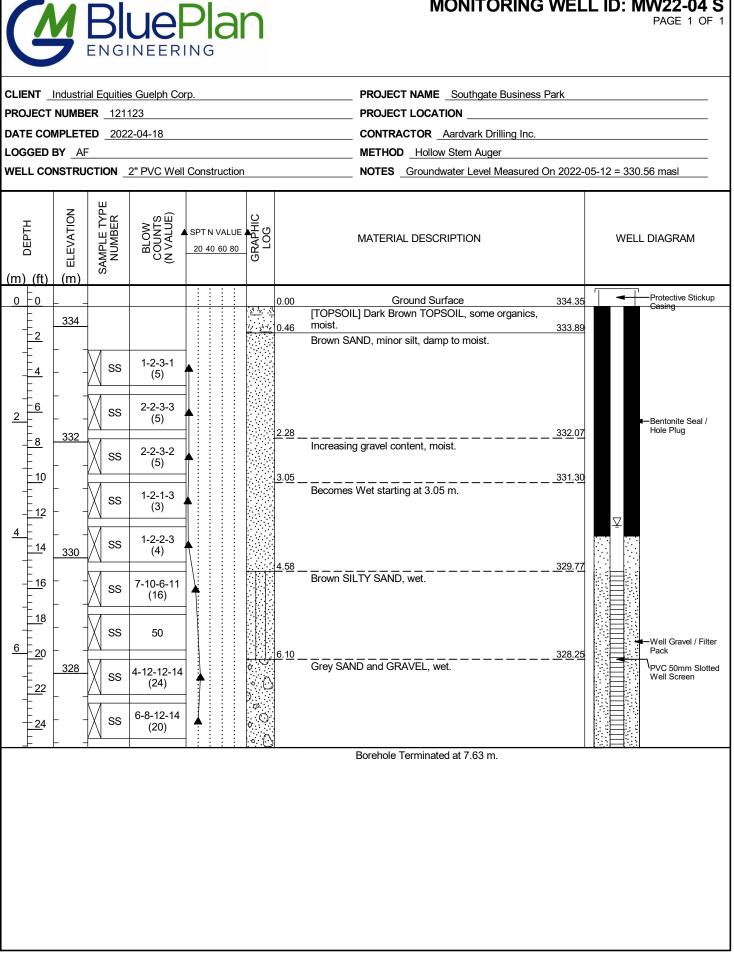
Date:	Project:	Submitter:	Reviewer:
June, 201	23089	D. Martin	B. Blackport
Disclaimer: The information contained	nerein may be compiled from numerous third	party materials that are subject to periodic of	hange Figure
	fort has been made by Matrix Solutions Inc. t		sented
at the time of publication, Matrix Soluti	ns Inc. assumes no liability for any errors, on	nissions, or inaccuracies in the third party ma	terial. GW-11

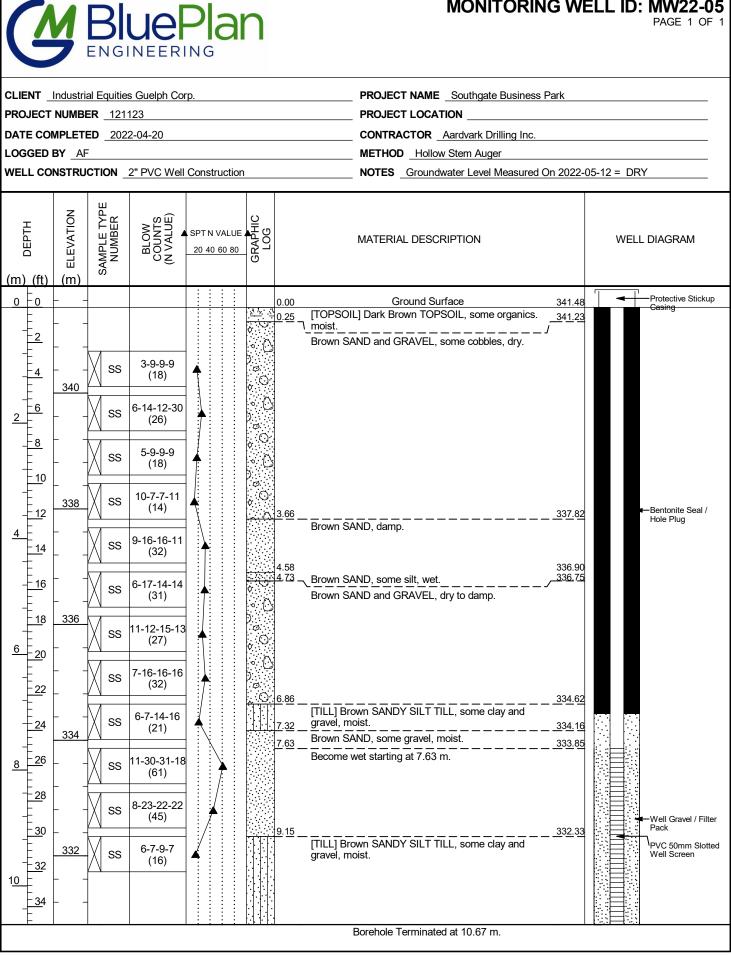
APPENDIX E1: MONITORING WELL LOGS

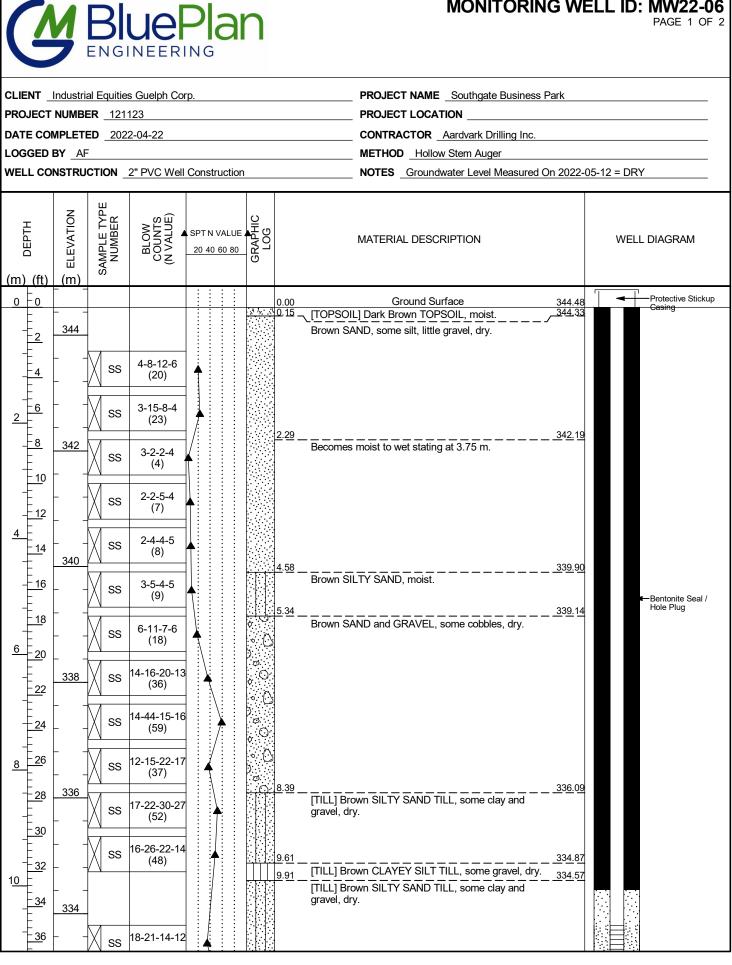


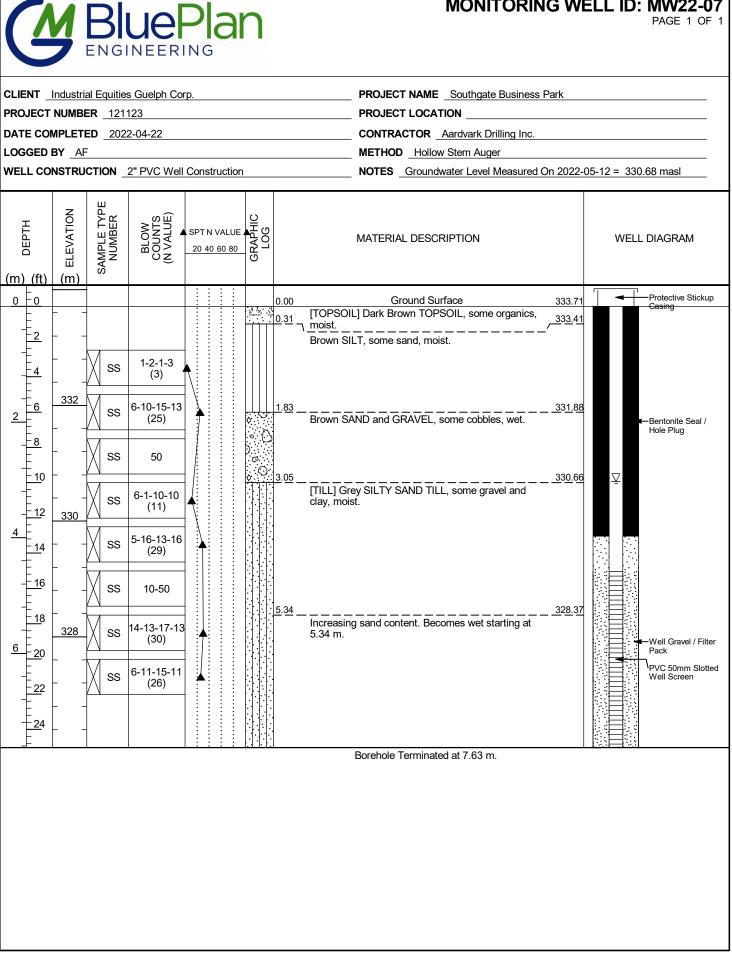

MONITORING WELL ID: MW22-01 D PAGE 2 OF 2

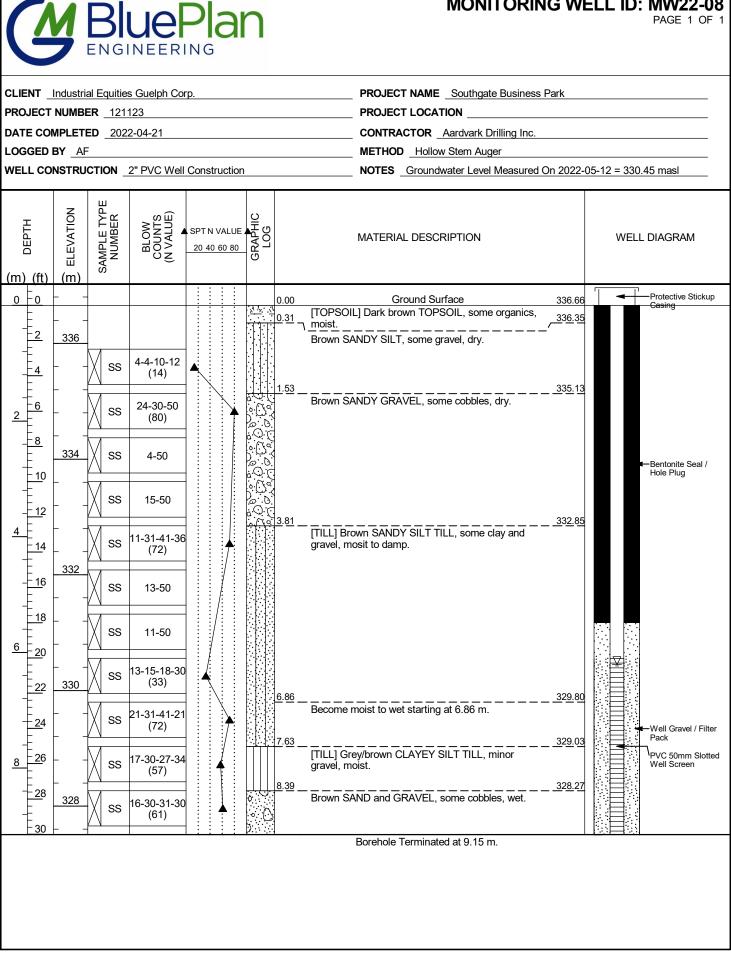


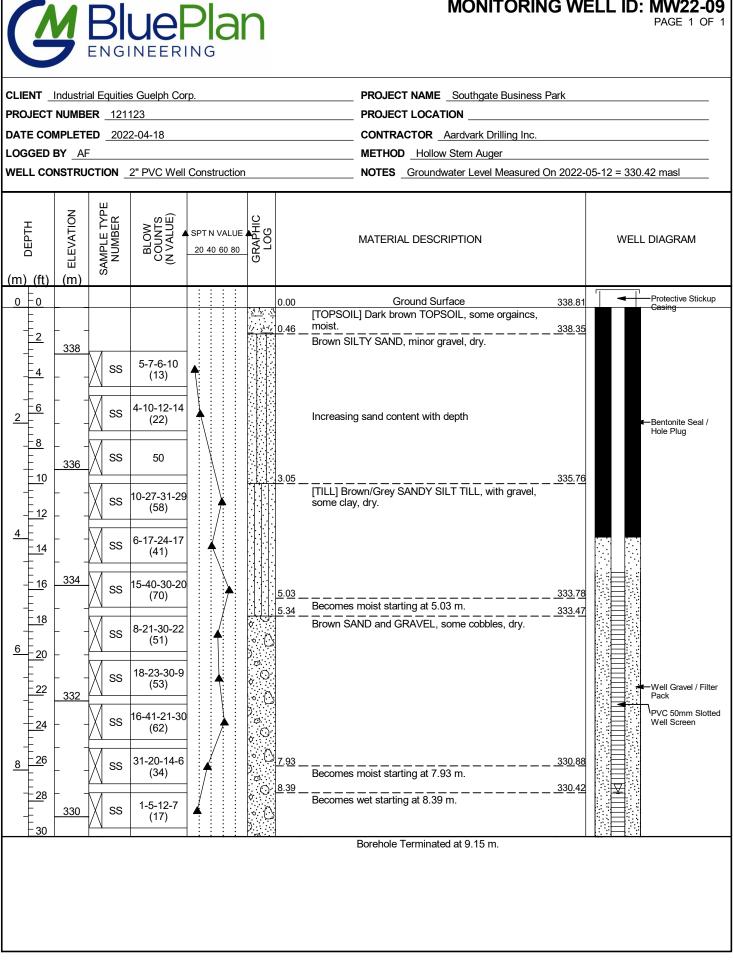


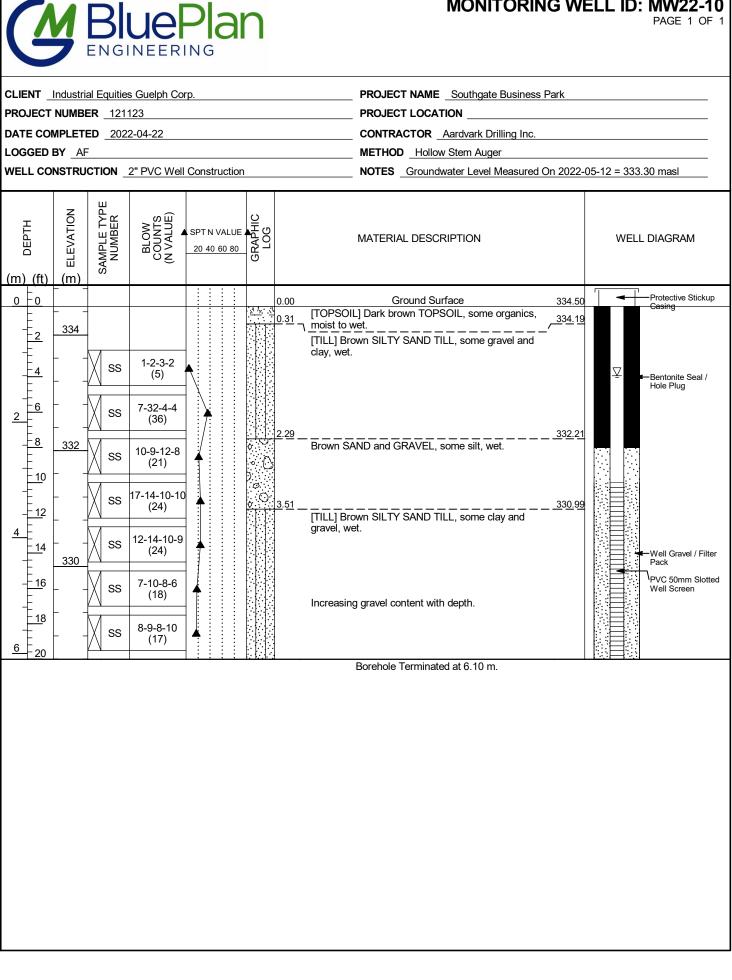

H ZOLE Well Diagram Well Diagram SPT N VALUE UP O D P O D Well Diagram MATERIAL DESCRIPTION Well Diagram				PROJECT NAME Southgate Business Park	
(m) (ft) (m) (m) (m) 330 [TILL] Brown SILTY SAND TILL, some gravel, wet. 38 (continued) 12 (G4)	PROJECT NUMBER 121	123		PROJECT LOCATION	
330 [TILL] Brown SILTY SAND TILL, some gravel, wet. 38 SS 12 SS 12 SS	(g) (f) DEPTH BELEVATION SAMPLE TYPE NUMBER	SPT N VALUE COUNTE BLOOK 20 40 60 80			WELL DIAGRAM
40 41 42 58 10-16-18-18 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12-14-50 (64) 10-16-18-18 (34)	[TILL] Brov (continued) 12.20 [TILL] Brov moist.	vn SILTY SAND TILL, some gravel, wet.) 329.2 vn SANDY SILT TILL, some gravel,	6 Well Gravel / Filter Pack

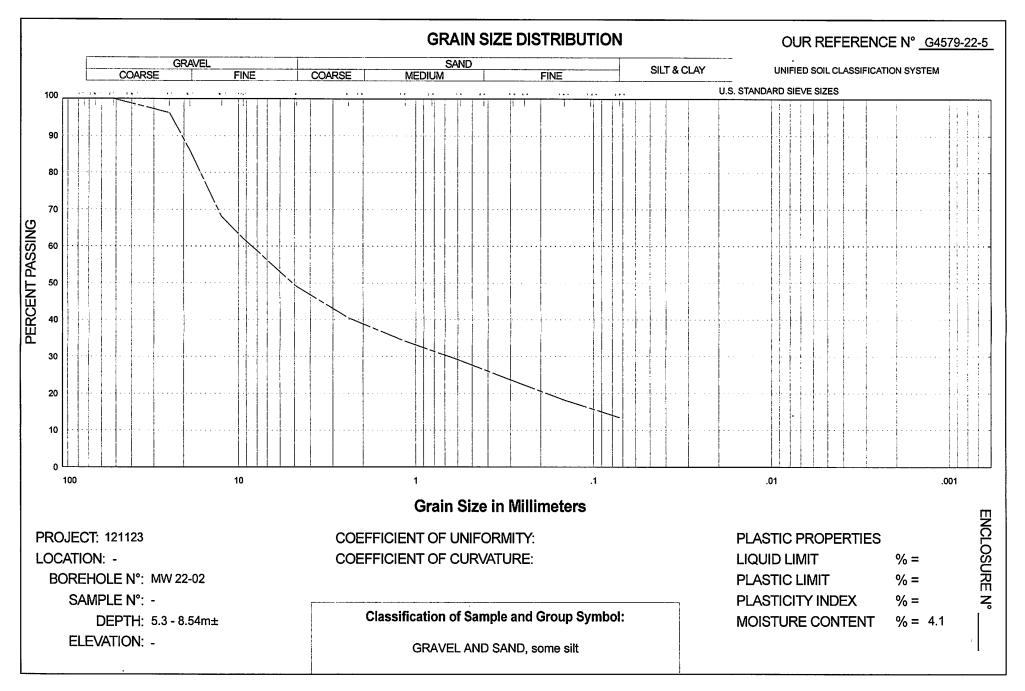


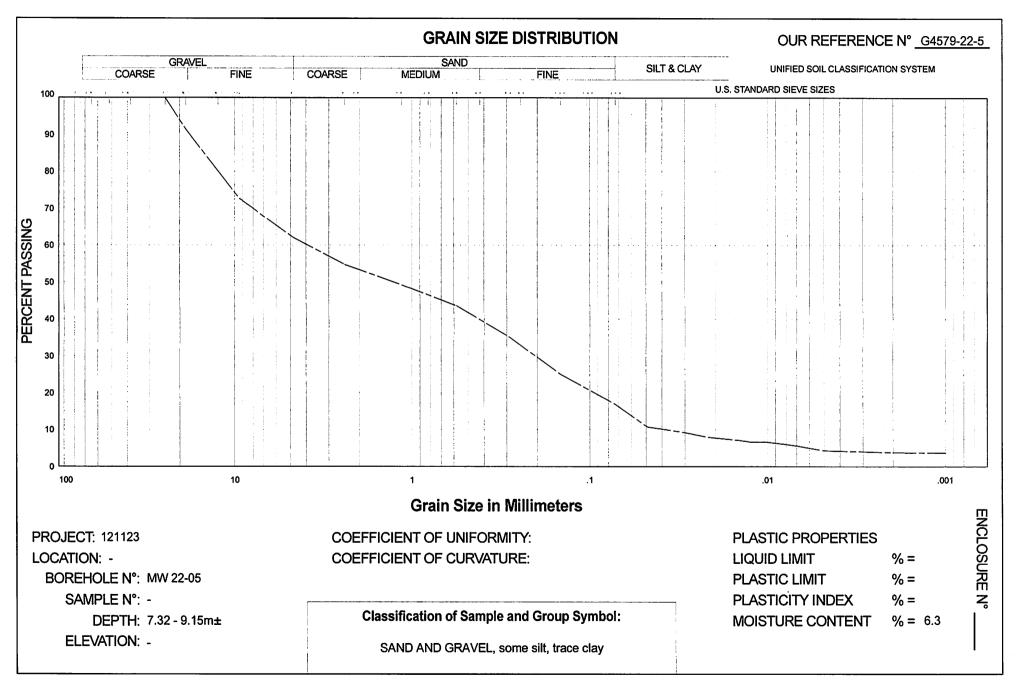


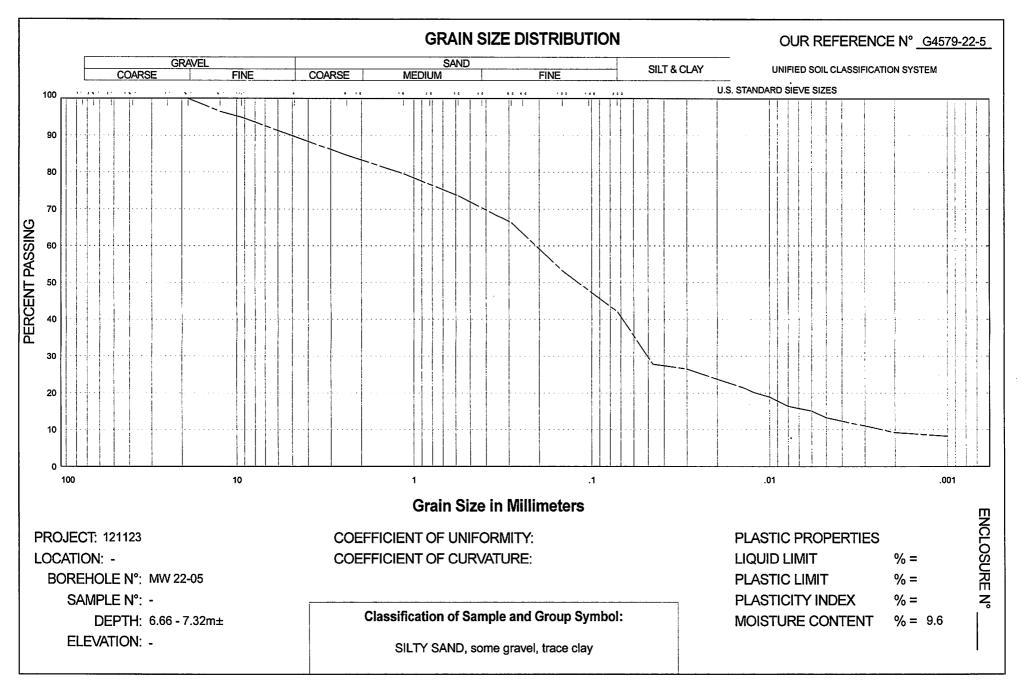


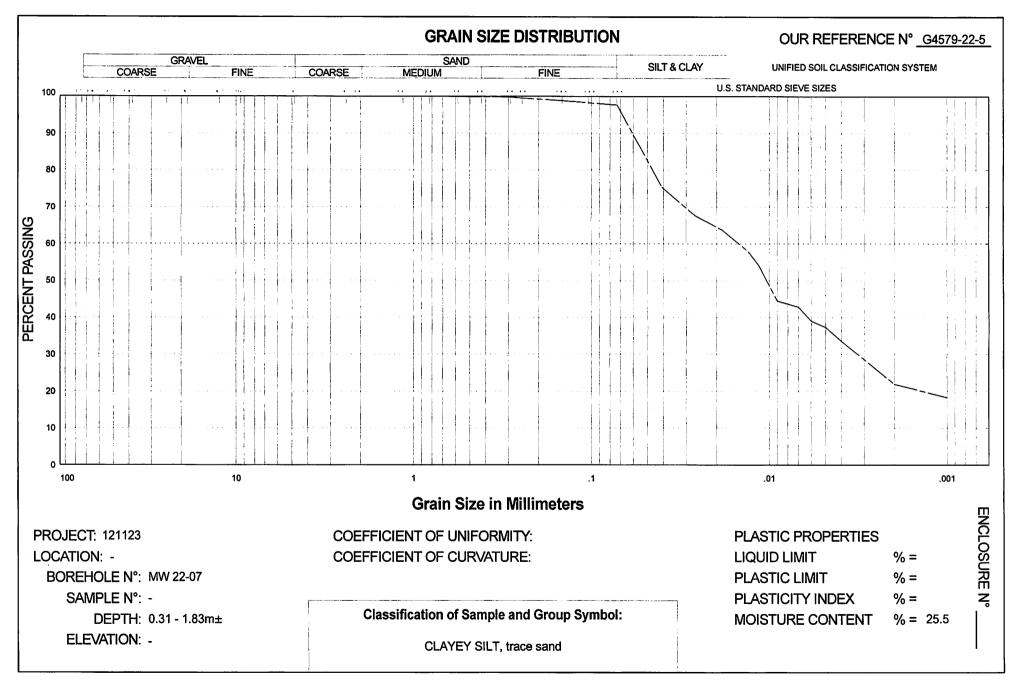

CLIENT Industrial Equities Guelph Corp. PROJECT NAME Southgate Business Park PROJECT NUMBER 121123 PROJECT LOCATION SAMPLE TYPE NUMBER ELEVATION ▲ SPT N VALUE ▲ C H C O BLOW COUNTS (N VALUE) DEPTH MATERIAL DESCRIPTION WELL DIAGRAM (m) (ft) (m) [TILL] Brown SILTY SAND TILL, some clay and gravel, dry. *(continued)* \mathbf{X} (35) <u>- 3</u>8 ┝ -Well Gravel / Filter Pack 12 <u>- 4</u>0 PVC 50mm Slotted Well Screen 332 19-30-40-14 SS (70) - 42 <u>12.96</u> 331.52 Becomes damp to moist starting at 12.96 m. 38-24-21-23 SS - 44 (45) Borehole Terminated at 13.73 m.

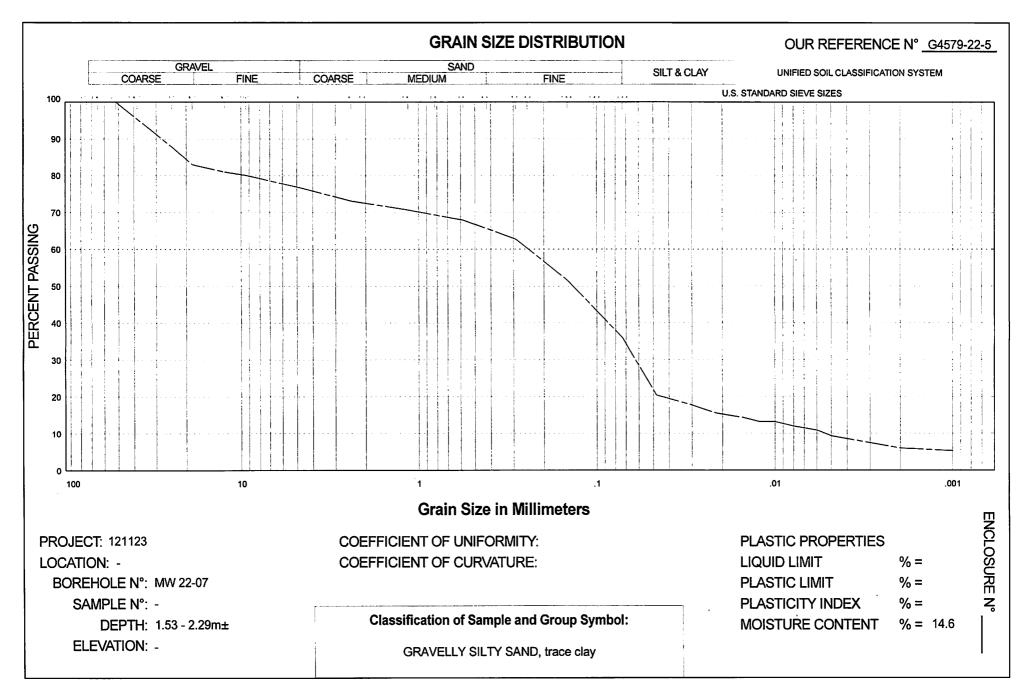

MONITORING WELL ID: MW22-08

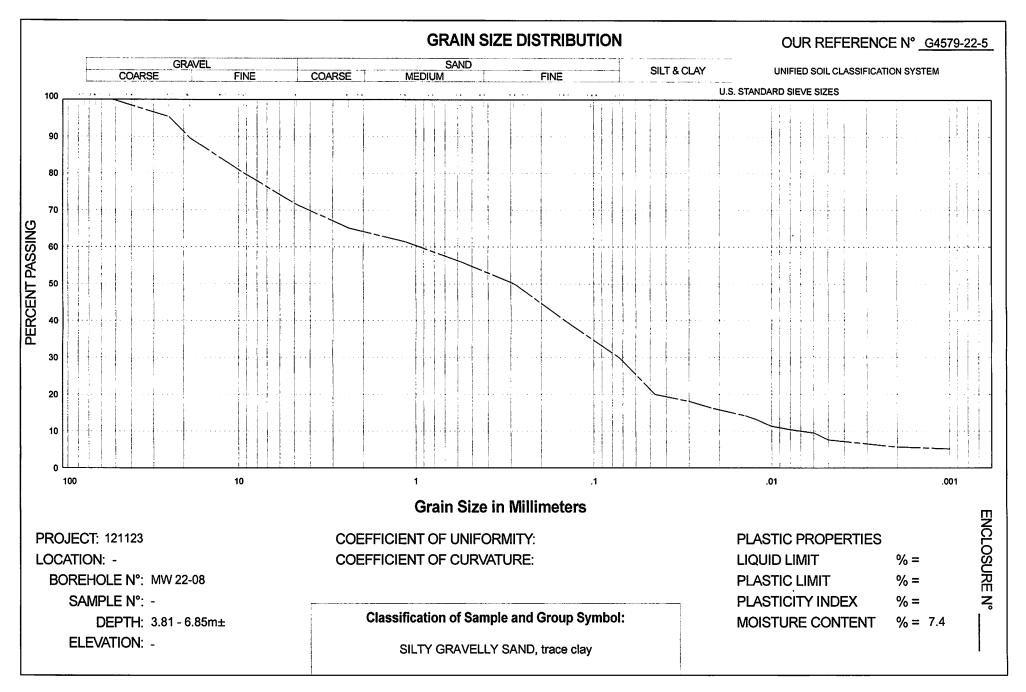

MONITORING WELL ID: MW22-09


MONITORING WELL ID: MW22-10




APPENDIX E2: RESULTS OF GRAIN SIZE ANALYSES




. •

APPENDIX F1: LABORATORY CERTIFICATES OF ANALYSIS GROUNDWATER FROM MONITORING WELLS

Your Project #: 121123 Your C.O.C. #: 871977-01-01

Attention: Abdi Faarah

GM BluePlan Engineering Limited 650 Woodlawn Rd W Block C, Unit 2 Guelph, ON CANADA N1K 1B8

> Report Date: 2022/04/14 Report #: R7086393 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C291734

Received: 2022/04/06, 17:30

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	4	N/A	2022/04/11	CAM SOP-00448	SM 23 2320 B m
Alkalinity	1	N/A	2022/04/08	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2022/04/11	CAM SOP-00102	APHA 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	4	N/A	2022/04/12	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	4	N/A	2022/04/12	CAM SOP-00463	SM 23 4500-Cl E m
Chloride by Automated Colourimetry	1	N/A	2022/04/08	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	4	N/A	2022/04/11	CAM SOP-00414	SM 23 2510 m
Conductivity	1	N/A	2022/04/08	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	5	N/A	2022/04/11	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	5	N/A	2022/04/14	CAM SOP 00102/00408/00447	SM 2340 B
Dissolved Metals by ICPMS	5	N/A	2022/04/13	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	5	N/A	2022/04/14		
Anion and Cation Sum	5	N/A	2022/04/14		
Total Ammonia-N	5	N/A	2022/04/11	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	4	N/A	2022/04/13	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Nitrate & Nitrite as Nitrogen in Water (2)	1	N/A	2022/04/08	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	1	2022/04/07	2022/04/08	CAM SOP-00413	SM 4500H+ B m
рН	4	2022/04/08	2022/04/11	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	4	N/A	2022/04/11	CAM SOP-00461	EPA 365.1 m
Orthophosphate	1	N/A	2022/04/08	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	5	N/A	2022/04/14		Auto Calc
Sat. pH and Langelier Index (@ 4C)	5	N/A	2022/04/14		Auto Calc
Sulphate by Automated Colourimetry	4	N/A	2022/04/11	CAM SOP-00464	EPA 375.4 m
Sulphate by Automated Colourimetry	1	N/A	2022/04/08	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	5	N/A	2022/04/14		Auto Calc

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

Page 1 of 14

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 121123 Your C.O.C. #: 871977-01-01

Attention: Abdi Faarah

GM BluePlan Engineering Limited 650 Woodlawn Rd W Block C, Unit 2 Guelph, ON CANADA N1K 1B8

> Report Date: 2022/04/14 Report #: R7086393 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C291734 Received: 2022/04/06, 17:30

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 14

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		SHM162	SHM163	SHM164			SHM165		
Sampling Date		2022/04/06	2022/04/06	2022/04/06			2022/04/06		
		12:00	12:30	13:00			13:30		
	UNITS	MW97-5	MW2-09	MW1-09	RDL	QC Batch	MW97-3	RDL	QC Batch
Calculated Parameters									
Anion Sum	me/L	5.31	6.72	6.12	N/A	7927314	10.2	N/A	7927314
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	230	290	240	1.0	7927310	440	1.0	7927310
Calculated TDS	mg/L	280	350	330	1.0	7927086	540	1.0	7927086
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.2	3.1	2.0	1.0	7927310	2.3	1.0	7927310
Cation Sum	me/L	5.52	6.62	6.11	N/A	7927314	10.5	N/A	7927314
Hardness (CaCO3)	mg/L	270	280	300	1.0	7927170	520	1.0	7927170
Ion Balance (% Difference)	%	2.00	0.690	0.0400	N/A	7927313	1.33	N/A	7927313
Langelier Index (@ 20C)	N/A	0.831	0.956	0.828		7927305	1.06		7927305
Langelier Index (@ 4C)	N/A	0.582	0.707	0.579		7927306	0.815		7927306
Saturation pH (@ 20C)	N/A	7.18	7.10	7.12		7927305	6.67		7927305
Saturation pH (@ 4C)	N/A	7.43	7.34	7.37		7927306	6.92		7927306
Inorganics									
Total Ammonia-N	mg/L	<0.050	0.062	<0.050	0.050	7931134	<0.050	0.050	7931134
Conductivity	umho/cm	490	590	570	1.0	7931410	870	1.0	7929132
Dissolved Organic Carbon	mg/L	0.46	1.4	0.93	0.40	7929063	1.6	0.40	7929063
Orthophosphate (P)	mg/L	<0.010	<0.010	<0.010	0.010	7931375	<0.050 (1)	0.050	7929088
рН	рН	8.01	8.05	7.95		7931411	7.73		7929134
Dissolved Sulphate (SO4)	mg/L	9.1	30	15	1.0	7931379	23	1.0	7929087
Alkalinity (Total as CaCO3)	mg/L	230	300	250	1.0	7931408	440	1.0	7929130
Dissolved Chloride (Cl-)	mg/L	6.1	5.1	9.7	1.0	7931362	3.8	1.0	7929108
Nitrite (N)	mg/L	<0.010	0.016	<0.010	0.010	7931348	<0.010	0.010	7929402
Nitrate (N)	mg/L	5.13	<0.10	8.52	0.10	7931348	10.1	0.10	7929402
Nitrate + Nitrite (N)	mg/L	5.13	<0.10	8.52	0.10	7931348	10.1	0.10	7929402
RDL = Reportable Detection Limit		•	-	-			-		

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

RESULTS OF ANALYSES OF WATER

		-	-	-
Bureau Veritas ID		SHM166		
Sampling Date		2022/04/06		
		14:00		
	UNITS	MW3-09	RDL	QC Batch
Calculated Parameters				
Anion Sum	me/L	5.93	N/A	7927314
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	280	1.0	7927310
Calculated TDS	mg/L	290	1.0	7927086
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.6	1.0	7927310
Cation Sum	me/L	6.14	N/A	7927314
Hardness (CaCO3)	mg/L	290	1.0	7927170
Ion Balance (% Difference)	%	1.75	N/A	7927313
Langelier Index (@ 20C)	N/A	0.690		7927305
Langelier Index (@ 4C)	N/A	0.441		7927306
Saturation pH (@ 20C)	N/A	7.08		7927305
Saturation pH (@ 4C)	N/A	7.33		7927306
Inorganics	•			
Total Ammonia-N	mg/L	0.073	0.050	7931134
Conductivity	umho/cm	530	1.0	7931410
Dissolved Organic Carbon	mg/L	1.6	0.40	7929063
Orthophosphate (P)	mg/L	<0.010	0.010	7931375
рН	рН	7.77		7931411
Dissolved Sulphate (SO4)	mg/L	7.1	1.0	7931379
Alkalinity (Total as CaCO3)	mg/L	290	1.0	7931408
Dissolved Chloride (Cl-)	mg/L	1.9	1.0	7931362
Nitrite (N)	mg/L	<0.010	0.010	7931348
Nitrate (N)	mg/L	<0.10	0.10	7931348
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	7931348
RDL = Reportable Detection Limit		-	•	-
QC Batch = Quality Control Batch				
N/A = Not Applicable				

Page 4 of 14 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		SHM162		SHM163	SHM163	SHM164	SHM165	SHM166		
Compling Data		2022/04/06		2022/04/06	2022/04/06	2022/04/06	2022/04/06	2022/04/06		
Sampling Date		12:00		12:30	12:30	13:00	13:30	14:00		
	UNITS	MW97-5	QC Batch	MW2-09	MW2-09 Lab-Dup	MW1-09	MW97-3	MW3-09	RDL	QC Batch
Metals										
Dissolved Aluminum (Al)	ug/L	<4.9	7930567	<4.9	<4.9	<4.9	6.0	18	4.9	7930511
Dissolved Antimony (Sb)	ug/L	<0.50	7930567	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7930511
Dissolved Arsenic (As)	ug/L	<1.0	7930567	<1.0	<1.0	<1.0	<1.0	1.9	1.0	7930511
Dissolved Barium (Ba)	ug/L	48	7930567	140	150	14	48	28	2.0	7930511
Dissolved Beryllium (Be)	ug/L	<0.40	7930567	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	7930511
Dissolved Boron (B)	ug/L	<10	7930567	11	11	<10	13	<10	10	7930511
Dissolved Cadmium (Cd)	ug/L	<0.090	7930567	<0.090	<0.090	<0.090	<0.090	<0.090	0.090	7930511
Dissolved Calcium (Ca)	ug/L	75000	7930567	73000	76000	82000	140000	76000	200	7930511
Dissolved Chromium (Cr)	ug/L	<5.0	7930567	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	7930511
Dissolved Cobalt (Co)	ug/L	<0.50	7930567	<0.50	<0.50	<0.50	<0.50	1.1	0.50	7930511
Dissolved Copper (Cu)	ug/L	<0.90	7930567	<0.90	<0.90	<0.90	1.3	<0.90	0.90	7930511
Dissolved Iron (Fe)	ug/L	<100	7930567	<100	<100	<100	<100	4300	100	7930511
Dissolved Lead (Pb)	ug/L	<0.50	7930567	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7930511
Dissolved Magnesium (Mg)	ug/L	21000	7930567	24000	24000	23000	39000	24000	50	7930511
Dissolved Manganese (Mn)	ug/L	<2.0	7930567	43	42	<2.0	<2.0	620	2.0	7930511
Dissolved Molybdenum (Mo)	ug/L	<0.50	7930567	5.4	5.5	<0.50	<0.50	<0.50	0.50	7930511
Dissolved Nickel (Ni)	ug/L	<1.0	7930567	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	7930511
Dissolved Phosphorus (P)	ug/L	<100	7930567	<100	<100	<100	<100	<100	100	7930511
Dissolved Potassium (K)	ug/L	490	7930567	1500	1400	510	870	1000	200	7930511
Dissolved Selenium (Se)	ug/L	<2.0	7930567	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	7930511
Dissolved Silicon (Si)	ug/L	4500	7930567	8300	8600	4100	5400	1600	50	7930511
Dissolved Silver (Ag)	ug/L	<0.090	7930567	<0.090	<0.090	<0.090	<0.090	<0.090	0.090	7930511
Dissolved Sodium (Na)	ug/L	1700	7930567	23000	22000	2800	1900	3800	100	7930511
Dissolved Strontium (Sr)	ug/L	78	7930567	110	110	85	140	67	1.0	7930511
Dissolved Thallium (Tl)	ug/L	<0.050	7930567	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7930511
Dissolved Titanium (Ti)	ug/L	<5.0	7930567	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	7930511
Dissolved Uranium (U)	ug/L	0.25	7930567	2.2	2.2	0.36	0.31	<0.10	0.10	7930511
Dissolved Vanadium (V)	ug/L	<0.50	7930567	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7930511
Dissolved Zinc (Zn)	ug/L	7.5	7930567	<5.0	<5.0	<5.0	7.5	<5.0	5.0	7930511
RDL = Reportable Detection Lir	mit						-			
QC Batch = Quality Control Bat	tch									

Lab-Dup = Laboratory Initiated Duplicate

TEST SUMMARY

Bureau Veritas ID:	SHM162	Collected:	2022/04/06
Sample ID:	MW97-5	Shipped:	
Matrix:	Water	Received:	2022/04/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7931408	N/A	2022/04/11	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7927310	N/A	2022/04/12	Automated Statchk
Chloride by Automated Colourimetry	KONE	7931362	N/A	2022/04/12	Alina Dobreanu
Conductivity	AT	7931410	N/A	2022/04/11	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7929063	N/A	2022/04/11	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7927170	N/A	2022/04/14	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	7930567	N/A	2022/04/13	Arefa Dabhad
Ion Balance (% Difference)	CALC	7927313	N/A	2022/04/14	Automated Statchk
Anion and Cation Sum	CALC	7927314	N/A	2022/04/14	Automated Statchk
Total Ammonia-N	LACH/NH4	7931134	N/A	2022/04/11	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	7931348	N/A	2022/04/13	Samuel Law
рН	AT	7931411	2022/04/08	2022/04/11	Surinder Rai
Orthophosphate	KONE	7931375	N/A	2022/04/11	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7927305	N/A	2022/04/14	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7927306	N/A	2022/04/14	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7931379	N/A	2022/04/11	Chandra Nandlal
Total Dissolved Solids (TDS calc)	CALC	7927086	N/A	2022/04/14	Automated Statchk

Bureau Veritas ID: SHM163 Sample ID: MW2-09 Matrix: Water

Collected: Shipped:	2022/04/06
Received:	2022/04/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7931408	N/A	2022/04/11	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7927310	N/A	2022/04/12	Automated Statchk
Chloride by Automated Colourimetry	KONE	7931362	N/A	2022/04/12	Alina Dobreanu
Conductivity	AT	7931410	N/A	2022/04/11	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7929063	N/A	2022/04/11	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7927170	N/A	2022/04/14	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	7930511	N/A	2022/04/13	Arefa Dabhad
Ion Balance (% Difference)	CALC	7927313	N/A	2022/04/14	Automated Statchk
Anion and Cation Sum	CALC	7927314	N/A	2022/04/14	Automated Statchk
Total Ammonia-N	LACH/NH4	7931134	N/A	2022/04/11	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	7931348	N/A	2022/04/13	Samuel Law
рН	AT	7931411	2022/04/08	2022/04/11	Surinder Rai
Orthophosphate	KONE	7931375	N/A	2022/04/11	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7927305	N/A	2022/04/14	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7927306	N/A	2022/04/14	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7931379	N/A	2022/04/11	Chandra Nandlal
Total Dissolved Solids (TDS calc)	CALC	7927086	N/A	2022/04/14	Automated Statchk

Page 6 of 14 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Sat. pH and Langelier Index (@ 20C)

Sat. pH and Langelier Index (@ 4C)

GM BluePlan Engineering Limited Client Project #: 121123 Sampler Initials: AF

TEST SUMMARY

Bureau Veritas ID: SHM163 Dup Sample ID: MW2-09 Matrix: Water					Collected: 2022/04/06 Shipped: Received: 2022/04/06
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Metals by ICPMS	ICP/MS	7930511	N/A	2022/04/13	Arefa Dabhad
Bureau Veritas ID: SHM164 Sample ID: MW1-09 Matrix: Water					Collected: 2022/04/06 Shipped: Received: 2022/04/06
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7931408	N/A	2022/04/11	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7927310	N/A	2022/04/12	Automated Statchk
Chloride by Automated Colourimetry	KONE	7931362	N/A	2022/04/12	Alina Dobreanu
Conductivity	AT	7931410	N/A	2022/04/11	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7929063	N/A	2022/04/11	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7927170	N/A	2022/04/14	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	7930511	N/A	2022/04/13	Arefa Dabhad
Ion Balance (% Difference)	CALC	7927313	N/A	2022/04/14	Automated Statchk
Anion and Cation Sum	CALC	7927314	N/A	2022/04/14	Automated Statchk
Total Ammonia-N	LACH/NH4	7931134	N/A	2022/04/11	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	7931348	N/A	2022/04/13	Samuel Law
pH	AT	7931411	2022/04/08	2022/04/11	Surinder Rai
Orthophosphate	KONE	7931375	N/A	2022/04/11	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7927305	N/A	2022/04/14	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7927306	N/A	2022/04/14	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7931379	N/A	2022/04/11	Chandra Nandlal
Total Dissolved Solids (TDS calc)	CALC	7927086	N/A	2022/04/14	Automated Statchk
Bureau Veritas ID: SHM165 Sample ID: MW97-3 Matrix: Water	Instrumentation	Datah	Extracted	Date Analyzed	Collected: 2022/04/06 Shipped: Received: 2022/04/06
Test Description Alkalinity	AT	Batch 7929130	N/A	2022/04/08	Analyst Surinder Rai
Alkalinity Carbonate, Bicarbonate and Hydroxide	CALC	7929130	N/A N/A	2022/04/08	Surinder Rai Automated Statchk
Carbonate, Bicarbonate and Hydroxide Chloride by Automated Colourimetry	KONE	7927310	N/A N/A	2022/04/11	Automated Statcnk Alina Dobreanu
Conductivity	AT	7929108	N/A N/A	2022/04/08	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7929132	N/A N/A	2022/04/08	Anna-Kay Gooden
Hardness (calculated as CaCO3)	TOCYNDIA	7929003	N/A N/A	2022/04/11	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	7930511	N/A N/A	2022/04/14	Arefa Dabhad
Ion Balance (% Difference)	CALC	7927313	N/A N/A	2022/04/13	Automated Statchk
Anion and Cation Sum	CALC	7927313	N/A N/A	2022/04/14	Automated Statchk
Total Ammonia-N	LACH/NH4	7927314	N/A N/A	2022/04/14	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH/NH4	7931134	N/A N/A	2022/04/11	Samuel Law
pH	AT	7929402	2022/04/07	2022/04/08	Samuel Law Surinder Rai
рн Orthophosphate	KONE	7929134	N/A	2022/04/08	Chandra Nandlal
Cot. all and langeling lader (@ 200)		7929088	N/A	2022/04/08	

Page 7 of 14

N/A

N/A

2022/04/14

2022/04/14

Automated Statchk

Automated Statchk

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

7927305

7927306

CALC

CALC

TEST SUMMARY

Sample ID: Matrix:	MW97-3 Water					Shipped: Received:	2022/04/06
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

Sulphate by Automated Colourimetry KONE 7929087 N/A	2022/04/08	Chandra Nandlal
Total Dissolved Solids (TDS calc) CALC 7927086 N/A	2022/04/14	Automated Statchk

Bureau Veritas ID:	SHM166
Sample ID:	MW3-09
Matrix:	Water

Collected: 2022/04/06 Shipped: Received: 2022/04/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7931408	N/A	2022/04/11	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7927310	N/A	2022/04/12	Automated Statchk
Chloride by Automated Colourimetry	KONE	7931362	N/A	2022/04/12	Alina Dobreanu
Conductivity	AT	7931410	N/A	2022/04/11	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7929063	N/A	2022/04/11	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7927170	N/A	2022/04/14	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	7930511	N/A	2022/04/13	Arefa Dabhad
Ion Balance (% Difference)	CALC	7927313	N/A	2022/04/14	Automated Statchk
Anion and Cation Sum	CALC	7927314	N/A	2022/04/14	Automated Statchk
Total Ammonia-N	LACH/NH4	7931134	N/A	2022/04/11	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	7931348	N/A	2022/04/13	Samuel Law
рН	AT	7931411	2022/04/08	2022/04/11	Surinder Rai
Orthophosphate	KONE	7931375	N/A	2022/04/11	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7927305	N/A	2022/04/14	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7927306	N/A	2022/04/14	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7931379	N/A	2022/04/11	Chandra Nandlal
Total Dissolved Solids (TDS calc)	CALC	7927086	N/A	2022/04/14	Automated Statchk

GENERAL COMMENTS

Results relate only to the items tested.

Page 9 of 14 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

QUALITY ASSURANCE REPORT

GM BluePlan Engineering Limited Client Project #: 121123 Sampler Initials: AF

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7929063	Dissolved Organic Carbon	2022/04/11	96	80 - 120	100	80 - 120	<0.40	mg/L	0.18	20
7929087	Dissolved Sulphate (SO4)	2022/04/08	NC	75 - 125	99	80 - 120	<1.0	mg/L	0.82	20
7929088	Orthophosphate (P)	2022/04/08	113	75 - 125	101	80 - 120	<0.010	mg/L	NC	25
7929108	Dissolved Chloride (Cl-)	2022/04/08	NC	80 - 120	105	80 - 120	<1.0	mg/L	1.6	20
7929130	Alkalinity (Total as CaCO3)	2022/04/08			99	85 - 115	<1.0	mg/L	1.4	20
7929132	Conductivity	2022/04/08			101	85 - 115	<1.0	umho/cm	0.72	25
7929134	рН	2022/04/08			102	98 - 103			1.1	N/A
7929402	Nitrate (N)	2022/04/08	93	80 - 120	98	80 - 120	<0.10	mg/L	0.44	20
7929402	Nitrite (N)	2022/04/08	99	80 - 120	103	80 - 120	<0.010	mg/L	NC	20
7930511	Dissolved Aluminum (Al)	2022/04/13	101	80 - 120	101	80 - 120	<4.9	ug/L	NC	20
7930511	Dissolved Antimony (Sb)	2022/04/13	102	80 - 120	99	80 - 120	<0.50	ug/L	NC	20
7930511	Dissolved Arsenic (As)	2022/04/13	101	80 - 120	99	80 - 120	<1.0	ug/L	NC	20
7930511	Dissolved Barium (Ba)	2022/04/13	99	80 - 120	99	80 - 120	<2.0	ug/L	0.24	20
7930511	Dissolved Beryllium (Be)	2022/04/13	95	80 - 120	97	80 - 120	<0.40	ug/L	NC	20
7930511	Dissolved Boron (B)	2022/04/13	96	80 - 120	97	80 - 120	<10	ug/L	6.8	20
7930511	Dissolved Cadmium (Cd)	2022/04/13	101	80 - 120	99	80 - 120	<0.090	ug/L	NC	20
7930511	Dissolved Calcium (Ca)	2022/04/13	NC	80 - 120	100	80 - 120	<200	ug/L	2.9	20
7930511	Dissolved Chromium (Cr)	2022/04/13	100	80 - 120	97	80 - 120	<5.0	ug/L	NC	20
7930511	Dissolved Cobalt (Co)	2022/04/13	97	80 - 120	95	80 - 120	<0.50	ug/L	NC	20
7930511	Dissolved Copper (Cu)	2022/04/13	94	80 - 120	95	80 - 120	<0.90	ug/L	NC	20
7930511	Dissolved Iron (Fe)	2022/04/13	98	80 - 120	94	80 - 120	<100	ug/L	NC	20
7930511	Dissolved Lead (Pb)	2022/04/13	99	80 - 120	99	80 - 120	<0.50	ug/L	NC	20
7930511	Dissolved Magnesium (Mg)	2022/04/13	95	80 - 120	97	80 - 120	<50	ug/L	2.6	20
7930511	Dissolved Manganese (Mn)	2022/04/13	99	80 - 120	99	80 - 120	<2.0	ug/L	1.9	20
7930511	Dissolved Molybdenum (Mo)	2022/04/13	98	80 - 120	95	80 - 120	<0.50	ug/L	2.9	20
7930511	Dissolved Nickel (Ni)	2022/04/13	96	80 - 120	95	80 - 120	<1.0	ug/L	NC	20
7930511	Dissolved Phosphorus (P)	2022/04/13	102	80 - 120	105	80 - 120	<100	ug/L	NC	20
7930511	Dissolved Potassium (K)	2022/04/13	101	80 - 120	98	80 - 120	<200	ug/L	1.2	20
7930511	Dissolved Selenium (Se)	2022/04/13	101	80 - 120	101	80 - 120	<2.0	ug/L	NC	20
7930511	Dissolved Silicon (Si)	2022/04/13	100	80 - 120	101	80 - 120	<50	ug/L	3.9	20
7930511	Dissolved Silver (Ag)	2022/04/13	97	80 - 120	95	80 - 120	<0.090	ug/L	NC	20

Page 10 of 14

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

GM BluePlan Engineering Limited Client Project #: 121123 Sampler Initials: AF

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7930511	Dissolved Sodium (Na)	2022/04/13	106	80 - 120	101	80 - 120	<100	ug/L	4.9	20
7930511	Dissolved Strontium (Sr)	2022/04/13	101	80 - 120	98	80 - 120	<1.0	ug/L	0.88	20
7930511	Dissolved Thallium (TI)	2022/04/13	103	80 - 120	102	80 - 120	<0.050	ug/L	NC	20
7930511	Dissolved Titanium (Ti)	2022/04/13	100	80 - 120	97	80 - 120	<5.0	ug/L	NC	20
7930511	Dissolved Uranium (U)	2022/04/13	97	80 - 120	99	80 - 120	<0.10	ug/L	1.7	20
7930511	Dissolved Vanadium (V)	2022/04/13	98	80 - 120	95	80 - 120	<0.50	ug/L	NC	20
7930511	Dissolved Zinc (Zn)	2022/04/13	99	80 - 120	97	80 - 120	<5.0	ug/L	NC	20
7930567	Dissolved Aluminum (Al)	2022/04/13	103	80 - 120	100	80 - 120	<4.9	ug/L		
7930567	Dissolved Antimony (Sb)	2022/04/13	103	80 - 120	98	80 - 120	<0.50	ug/L		
7930567	Dissolved Arsenic (As)	2022/04/13	104	80 - 120	99	80 - 120	<1.0	ug/L		
7930567	Dissolved Barium (Ba)	2022/04/13	101	80 - 120	100	80 - 120	<2.0	ug/L		
7930567	Dissolved Beryllium (Be)	2022/04/13	100	80 - 120	95	80 - 120	<0.40	ug/L		
7930567	Dissolved Boron (B)	2022/04/13	100	80 - 120	94	80 - 120	<10	ug/L	4.1	20
7930567	Dissolved Cadmium (Cd)	2022/04/13	101	80 - 120	99	80 - 120	<0.090	ug/L		
7930567	Dissolved Calcium (Ca)	2022/04/13	NC	80 - 120	101	80 - 120	<200	ug/L	0.45	20
7930567	Dissolved Chromium (Cr)	2022/04/13	102	80 - 120	98	80 - 120	<5.0	ug/L		
7930567	Dissolved Cobalt (Co)	2022/04/13	101	80 - 120	94	80 - 120	<0.50	ug/L		
7930567	Dissolved Copper (Cu)	2022/04/13	96	80 - 120	96	80 - 120	<0.90	ug/L		
7930567	Dissolved Iron (Fe)	2022/04/13	100	80 - 120	93	80 - 120	<100	ug/L	NC	20
7930567	Dissolved Lead (Pb)	2022/04/13	99	80 - 120	99	80 - 120	<0.50	ug/L		
7930567	Dissolved Magnesium (Mg)	2022/04/13	105	80 - 120	94	80 - 120	<50	ug/L	4.1	20
7930567	Dissolved Manganese (Mn)	2022/04/13	NC	80 - 120	98	80 - 120	<2.0	ug/L	0.73	20
7930567	Dissolved Molybdenum (Mo)	2022/04/13	99	80 - 120	95	80 - 120	<0.50	ug/L		
7930567	Dissolved Nickel (Ni)	2022/04/13	100	80 - 120	95	80 - 120	<1.0	ug/L		
7930567	Dissolved Phosphorus (P)	2022/04/13	104	80 - 120	106	80 - 120	<100	ug/L		
7930567	Dissolved Potassium (K)	2022/04/13	103	80 - 120	94	80 - 120	<200	ug/L		
7930567	Dissolved Selenium (Se)	2022/04/13	102	80 - 120	100	80 - 120	<2.0	ug/L		
7930567	Dissolved Silicon (Si)	2022/04/13	106	80 - 120	100	80 - 120	<50	ug/L		
7930567	Dissolved Silver (Ag)	2022/04/13	98	80 - 120	95	80 - 120	<0.090	ug/L		
7930567	Dissolved Sodium (Na)	2022/04/13	108	80 - 120	103	80 - 120	<100	ug/L	0.071	20
7930567	Dissolved Strontium (Sr)	2022/04/13	102	80 - 120	97	80 - 120	<1.0	ug/L		

Page 11 of 14

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

GM BluePlan Engineering Limited Client Project #: 121123 Sampler Initials: AF

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7930567	Dissolved Thallium (Tl)	2022/04/13	101	80 - 120	102	80 - 120	<0.050	ug/L		
7930567	Dissolved Titanium (Ti)	2022/04/13	99	80 - 120	99	80 - 120	<5.0	ug/L		
7930567	Dissolved Uranium (U)	2022/04/13	98	80 - 120	98	80 - 120	<0.10	ug/L		
7930567	Dissolved Vanadium (V)	2022/04/13	102	80 - 120	95	80 - 120	<0.50	ug/L		
7930567	Dissolved Zinc (Zn)	2022/04/13	103	80 - 120	96	80 - 120	<5.0	ug/L		
7931134	Total Ammonia-N	2022/04/11	93	75 - 125	99	80 - 120	<0.050	mg/L	NC	20
7931348	Nitrate (N)	2022/04/13	97	80 - 120	98	80 - 120	<0.10	mg/L	0.26	20
7931348	Nitrite (N)	2022/04/13	92	80 - 120	102	80 - 120	<0.010	mg/L	NC	20
7931362	Dissolved Chloride (Cl-)	2022/04/12	NC	80 - 120	103	80 - 120	<1.0	mg/L	0.35	20
7931375	Orthophosphate (P)	2022/04/11	106	75 - 125	101	80 - 120	<0.010	mg/L	0.13	25
7931379	Dissolved Sulphate (SO4)	2022/04/11	102	75 - 125	98	80 - 120	<1.0	mg/L	0.43	20
7931408	Alkalinity (Total as CaCO3)	2022/04/11			99	85 - 115	<1.0	mg/L	0.90	20
7931410	Conductivity	2022/04/11			102	85 - 115	<1.0	umho/cm	0.35	25
7931411	рН	2022/04/11			101	98 - 103			0.83	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

875 E	INVOICE TO:				REP	ORT TO:				PRO	JECT INFORM	ATION:		Laboratory Use	Only:
10. 1809.1	BluePlan Engineering Li	mited	Company		. I. 1/8	1.35	1.11.2	in 1	Quotatio	# C2	20251			Bureau Veritas Job #:	Bottle Order #:
tress: 650 Woodla	son awn Rd W Block C, Unit 2	,	Attention:	Abdi F	aarah	1.1.2	1.5		P.O.#		a sand		10.0		
Guelph ON			Address:	-			-		Project		21123		Ale.		871977
(519) 824-8	Fax. 17	19) 824-8089	Tet	1.1	all the first	Fax		1.50	Project N	ame;	100			COC #:	Project Manager
ail: info@gmbli			Email:		arah@gmblu	eplan.ca	A market		Sampled	ву:	Abdi Fo	arah		C#871977-01-01	Ashton Gibson
MOE REGULATED DRI SUBMITTED	INKING WATER OR WATE	R INTENDED FOR H	HUMAN CO	ONSUMPTION	MUST BE				ANALYSIS RE	QUESTED (PLEA:	SE BE SPECIFI	IC)		Turnaround Time (TAT) R	equired:
Regulation 153 (2011)	and the second se	Other Regulations			nstructions	circle): /I			1				Regular (St	Please provide advance notice fo andard) TAT:	
able 1 Res/Park		Sanitary Sewer Bylaw					35		_		1 1			If Rush TAT is not specified):	
able 2 Ind/Comm able 3 Agri/Other		Storm Sewer Bylaw Municipality				Field Filtered (please cl	prehensi			1 a ca				= 5-7 Working days for most tests tandard TAT for certain tests such as B	
able		Reg 406 Table				h H /	and				_		days - contact	your Project Manager for details.	
10 11 11 11 11 11 11 11 11 11 11 11 11 1	Other	A Street A				fetal	a g	-					Date Required	Rush TAT (if applies to entire subm	lission) le Required:
Include C Sample Barcode Label	Criteria on Certificate of Ana		-	The Second		Field	\$3				-		Rush Confirma	ation Number:(c	all lab for #)
Sample Barcode Label	Sample (Location) Id	Call	Sampled	Time Sampled	Matrix		G						# of Bottles	Comm	
	MW97-5	04/0	10/2022	12:00	GN	127	\checkmark						5		
	1W2-09			12:30	GW	. The	1						5		
	MW1-09			13-00	6W		V						5		
	MW97 - 3			13:30			V		-				5	1	
	MW3-09			14:00	GW	8 2.10							_		
	1105-01	-	1	19:00	CrW		1000		_		+		5		
										-	06-Apr-2	2 17.30			
						3 10 1					n Gibson				00
						La Caller								REC'D IN WA	TERLOO
										- C:	291734				
										мүм	ENV	7-1110			
															and a l
*RELINOUISHED	RV- (Signature/Print)	Date: (YY/MM/DD)			RECEIVED	BY: (Signature/	Print)	Date: (YY/MM/DD)	Time	# jars u		Laborato	ary Use Only	cepacks
		22/04/06	15:5					2022	104/06	15-53	not sub	Time Sens	itive Temperatur	e (fC) on Recei Custody Se	al Yes
SS OTHERWISE AGREED TO	IN WRITING, WORK SUBMITTED ANCE OF OUR TERMS WHICH AR	ON THIS CHAIN OF CUS	TODY IS SUR	IFCT TO					104106	17:30			6	19/10 C Intact	

Unince 7/216 miles

Your Project #: 121123 Your C.O.C. #: 877774-03-01

Attention: Abdi Faarah

GM BluePlan Engineering Limited 650 Woodlawn Rd W Block C, Unit 2 Guelph, ON CANADA N1K 1B8

> Report Date: 2022/05/20 Report #: R7132857 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2D0995

Received: 2022/05/13, 10:00

Sample Matrix: Water # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	9	N/A	2022/05/18	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	9	N/A	2022/05/19	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	9	N/A	2022/05/18	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	9	N/A	2022/05/18	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	9	N/A	2022/05/18	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	9	N/A	2022/05/19	CAM SOP 00102/00408/00447	SM 2340 B
Dissolved Metals by ICPMS	9	N/A	2022/05/19	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	9	N/A	2022/05/19		
Anion and Cation Sum	9	N/A	2022/05/19		
Total Ammonia-N	9	N/A	2022/05/19	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	9	N/A	2022/05/18	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	9	2022/05/17	2022/05/18	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	9	N/A	2022/05/18	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	9	N/A	2022/05/19		Auto Calc
Sat. pH and Langelier Index (@ 4C)	9	N/A	2022/05/19		Auto Calc
Sulphate by Automated Colourimetry	9	N/A	2022/05/18	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	9	N/A	2022/05/19		Auto Calc

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.

Page 1 of 18

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 121123 Your C.O.C. #: 877774-03-01

Attention: Abdi Faarah

GM BluePlan Engineering Limited 650 Woodlawn Rd W Block C, Unit 2 Guelph, ON CANADA N1K 1B8

> Report Date: 2022/05/20 Report #: R7132857 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2D0995

Received: 2022/05/13, 10:00

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID		SPX541		SPX542	SPX543			SPX543		
Sampling Date		2022/05/12		2022/05/12	2022/05/12			2022/05/12		
		13:20		15:30	14:30			14:30		
COC Number		877774-03-01		877774-03-01	877774-03-01			877774-03-01		
	UNITS	MW22-01S	RDL	MW22-01D	MW22-02	RDL	QC Batch	MW22-02 Lab-Dup	RDL	QC Batch
Calculated Parameters										
Anion Sum	me/L	7.80	N/A	6.98	7.23	N/A	7999556			
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	280	1.0	230	280	1.0	7999549			
Calculated TDS	mg/L	400	1.0	360	380	1.0	7999560			
Carb. Alkalinity (calc. as CaCO3)	mg/L	3.3	1.0	3.4	2.4	1.0	7999549			
Cation Sum	me/L	7.66	N/A	7.11	7.16	N/A	7999556			
Hardness (CaCO3)	mg/L	330	1.0	300	300	1.0	7999552			
Ion Balance (% Difference)	%	0.910	N/A	0.930	0.470	N/A	7999554			
Langelier Index (@ 20C)	N/A	0.967		0.838	0.892		7999557			
Langelier Index (@ 4C)	N/A	0.718		0.589	0.644		7999558			
Saturation pH (@ 20C)	N/A	7.13		7.35	7.06		7999557			
Saturation pH (@ 4C)	N/A	7.38		7.60	7.31		7999558			
Inorganics		I						I		
Total Ammonia-N	mg/L	0.19	0.050	0.32	0.096	0.050	8001695			
Conductivity	umho/cm	730	1.0	670	680	1.0	8000939	670	1.0	8000939
Dissolved Organic Carbon	mg/L	1.5	0.40	1.2	0.80	0.40	8001605			
Orthophosphate (P)	mg/L	<0.050 (1)	0.050	<0.010	<0.010	0.010	8000919			
рН	рН	8.10		8.19	7.95		8000937	7.98		8000937
Dissolved Sulphate (SO4)	mg/L	9.7	1.0	12	8.6	1.0	8000917			
Alkalinity (Total as CaCO3)	mg/L	280	1.0	240	290	1.0	8000930	290	1.0	8000930
Dissolved Chloride (Cl-)	mg/L	63	1.0	69	25	1.0	8000916			
Nitrite (N)	mg/L	0.041	0.010	0.111	0.020	0.010	8000913			
Nitrate (N)	mg/L	2.49	0.10	0.55	8.62	0.10	8000913			
Nitrate + Nitrite (N)	mg/L	2.54	0.10	0.66	8.64	0.10	8000913			
Metals				•	•					
Dissolved Aluminum (Al)	ug/L	9.8	4.9	12	6.6	4.9	8001432			
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	<0.50	<0.50	0.50	8001432			
Dissolved Arsenic (As)	ug/L	<1.0	1.0	<1.0	<1.0	1.0	8001432			
Dissolved Barium (Ba)	ug/L	53	2.0	48	33	2.0	8001432			
Dissolved Beryllium (Be)	ug/L	<0.40	0.40	<0.40	<0.40	0.40	8001432		1	
Dissolved Boron (B)	ug/L	37	10	72	12	10	8001432		1	
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	-	<0.090	0.090	8001432		1	
Dissolved Calcium (Ca)	ug/L	72000	200	51000	84000	200	8001432		1	
RDL = Reportable Detection Limit						ı				
QC Batch = Quality Control Batch										
Lab-Dup = Laboratory Initiated Du	olicate									

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

Page 3 of 18

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RCAP - COMPREHENSIVE (WATER)

JITS g/L g/L g/L g/L	2022/05/12 13:20 877774-03-01 MW22-01S <5.0 <0.50 1.9	RDL 5.0 0.50	2022/05/12 15:30 877774-03-01 MW22-01D <5.0	2022/05/12 14:30 877774-03-01 MW22-02	RDL	QC Batch	2022/05/12 14:30 877774-03-01 MW22-02 Lab-Dup	RDL	QC Batch
g/L g/L g/L	877774-03-01 MW22-01S <5.0 <0.50	5.0	877774-03-01 MW22-01D	877774-03-01 MW22-02	RDL	QC Batch	877774-03-01 MW22-02	RDL	QC Batcl
g/L g/L g/L	MW22-01S <5.0 <0.50	5.0	MW22-01D	MW22-02	RDL	QC Batch	MW22-02	RDL	QC Batch
g/L g/L g/L	<5.0 <0.50	5.0			RDL	QC Batch	-	RDL	QC Batch
g/L g/L	<0.50		<5.0				Lap-Dup		-,
g/L		0.50		<5.0	5.0	8001432			
-	1.0	0.50	<0.50	<0.50	0.50	8001432			
g/L	1.9	0.90	1.7	1.4	0.90	8001432			
,	<100	100	<100	<100	100	8001432			
g/L	<0.50	0.50	<0.50	<0.50	0.50	8001432			
g/L	35000	50	41000	22000	50	8001432			
g/L	86	2.0	81	24	2.0	8001432			
g/L	17	0.50	15	0.97	0.50	8001432			
g/L	1.6	1.0	1.9	<1.0	1.0	8001432			
g/L	100	100	<100	<100	100	8001432			
g/L	7200	200	7100	1500	200	8001432			
g/L	<2.0	2.0	<2.0	<2.0	2.0	8001432			
g/L	3400	50	4400	3500	50	8001432			
g/L	<0.090	0.090	<0.090	<0.090	0.090	8001432			
g/L	22000	100	22000	25000	100	8001432			
g/L	170	1.0	140	120	1.0	8001432			
g/L	<0.050	0.050	0.059	<0.050	0.050	8001432			
g/L	<5.0	5.0	<5.0	<5.0	5.0	8001432			
g/L	0.74	0.10	0.19	0.23	0.10	8001432			
g/L	<0.50	0.50	<0.50	<0.50	0.50	8001432			
g/L	<5.0	5.0	<5.0	<5.0	5.0	8001432			
	g/L g/L g/L g/L g/L g/L g/L g/L g/L g/L	g/L 35000 g/L 35000 g/L 17 g/L 17 g/L 16 g/L 100 g/L 200 g/L 3400 g/L 3400 g/L 22000 g/L 2000 g/L 170 g/L 0.050 g/L <0.050	g/L 35000 50 g/L 86 2.0 g/L 17 0.50 g/L 17 0.50 g/L 1.6 1.0 g/L 1.6 1.0 g/L 100 100 g/L 7200 200 g/L 3400 50 g/L 3400 50 g/L 2000 0.090 g/L 2000 100 g/L 2000 0.090 g/L 2000 0.090 g/L 2000 100 g/L 5.0 0.050 g/L 0.050 0.050 g/L 0.74 0.10 g/L <0.50	g/L 35000 50 41000 g/L 86 2.0 81 g/L 17 0.50 15 g/L 1.6 1.0 1.9 g/L 100 100 <100	g/L 35000 50 41000 22000 g/L 86 2.0 81 24 g/L 17 0.50 15 0.97 g/L 1.6 1.0 1.9 <1.0	g/L 35000 50 41000 22000 50 g/L 86 2.0 81 24 2.0 g/L 17 0.50 15 0.97 0.50 g/L 1.6 1.0 1.9 <1.0 1.0 g/L 100 100 <100 <100 100 g/L 7200 200 7100 1500 200 g/L <2.0 2.0 <2.0 <2.0 2.0 g/L <0.090 0.090 <0.090 <0.090 0.090 g/L <0.090 0.090 <0.090 <0.090 0.090 g/L <0.050 0.050 0.059 <0.050 0.050 g/L <5.0 5.0 <5.0 <5.0 <5.0 g/L 0.74 0.10 0.19 0.23 0.10 g/L <0.50 0.50 <0.50 <0.50 <0.50 <0.50	g/L 35000 50 41000 22000 50 8001432 g/L 86 2.0 81 24 2.0 8001432 g/L 17 0.50 15 0.97 0.50 8001432 g/L 1.6 1.0 1.9 <1.0	g/L 35000 50 41000 22000 50 8001432 g/L 86 2.0 81 24 2.0 8001432 g/L 17 0.50 15 0.97 0.50 8001432 g/L 1.6 1.0 1.9 <1.0 1.0 8001432 g/L 1.6 1.0 1.9 <1.0 1.0 8001432 g/L 1.6 1.0 1.9 <1.0 1.0 8001432 g/L 100 100 <100 <100 <100 8001432 g/L 7200 200 7100 1500 200 8001432 g/L 7200 200 7100 1500 200 8001432 g/L 3400 50 4400 3500 50 8001432 g/L 3400 50 4400 3500 50 8001432 g/L 2000 0.090 <0.090 <0.090 0.090	g/L 35000 50 41000 22000 50 8001432 g/L 86 2.0 81 24 2.0 8001432 g/L 17 0.50 15 0.97 0.50 8001432 20 g/L 1.7 0.50 15 0.97 0.50 8001432 20 g/L 1.6 1.0 1.9 <1.0 1.0 8001432 20 g/L 1.6 1.0 1.9 <1.0 1.0 8001432 20 g/L 100 100 <100 <100 100 8001432 20 g/L 100 100 <100 <100 100 8001432 20 g/L 7200 200 7100 1500 200 8001432 20 g/L 3400 50 4400 3500 50 8001432 20 g/L 3400 50 4400 3500 50 8001432 <

Lab-Dup = Laboratory Initiated Duplicate

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID		SPX544	SPX545		SPX546	SPX547		
Sampling Data		2022/05/12	2022/05/12		2022/05/12	2022/05/12		
Sampling Date		16:15	16:30		12:55	13:45		
COC Number		877774-03-01	877774-03-01		877774-03-01	877774-03-01		
	UNITS	MW22-04S	MW22-04D	RDL	MW22-07	MW22-08	RDL	QC Batch
Calculated Parameters								
Anion Sum	me/L	6.27	6.28	N/A	7.64	6.16	N/A	7999556
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	270	280	1.0	320	240	1.0	7999549
Calculated TDS	mg/L	330	310	1.0	400	330	1.0	7999560
Carb. Alkalinity (calc. as CaCO3)	mg/L	3.0	3.2	1.0	2.7	2.3	1.0	7999549
Cation Sum	me/L	6.38	6.01	N/A	7.79	6.18	N/A	7999556
Hardness (CaCO3)	mg/L	300	270	1.0	360	290	1.0	7999552
Ion Balance (% Difference)	%	0.850	2.17	N/A	0.950	0.200	N/A	7999554
Langelier Index (@ 20C)	N/A	1.02	0.962		0.957	0.839		7999557
Langelier Index (@ 4C)	N/A	0.771	0.713		0.709	0.590		7999558
Saturation pH (@ 20C)	N/A	7.05	7.12		7.01	7.17		7999557
Saturation pH (@ 4C)	N/A	7.30	7.37		7.26	7.42		7999558
Inorganics			•		•	•		
Total Ammonia-N	mg/L	0.15	0.13	0.050	0.11	0.13	0.050	8001695
Conductivity	umho/cm	580	550	1.0	700	570	1.0	8000939
Dissolved Organic Carbon	mg/L	1.2	2.2	0.40	1.3	0.73	0.40	8001605
Orthophosphate (P)	mg/L	<0.010	<0.010	0.010	<0.050 (1)	<0.050 (1)	0.050	8000919
рН	pН	8.07	8.08		7.96	8.01		8000937
Dissolved Sulphate (SO4)	mg/L	8.4	8.1	1.0	9.0	8.1	1.0	8000917
Alkalinity (Total as CaCO3)	mg/L	270	280	1.0	320	240	1.0	8000930
Dissolved Chloride (Cl-)	mg/L	6.7	13	1.0	17	12	1.0	8000916
Nitrite (N)	mg/L	0.010	0.011	0.010	0.063	0.015	0.010	8000913
Nitrate (N)	mg/L	5.96	1.78	0.10	8.31	11.0	0.10	8000913
Nitrate + Nitrite (N)	mg/L	5.97	1.79	0.10	8.37	11.0	0.10	8000913
Metals	<u>. </u>							
Dissolved Aluminum (Al)	ug/L	<4.9	7.7	4.9	9.2	9.3	4.9	8001432
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	0.50	<0.50	<0.50	0.50	8001432
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	1.0	<1.0	<1.0	1.0	8001432
Dissolved Barium (Ba)	ug/L	11	20	2.0	34	38	2.0	8001432
Dissolved Beryllium (Be)	ug/L	<0.40	<0.40	0.40	<0.40	<0.40	0.40	8001432
Dissolved Boron (B)	ug/L	<10	15	10	18	<10	10	8001432
Dissolved Cadmium (Cd)	ug/L	<0.090	<0.090	0.090	<0.090	<0.090	0.090	8001432
Dissolved Calcium (Ca)	ug/L	88000	71000	200	86000	74000	200	8001432
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	5.0	<5.0	<5.0	5.0	8001432
RDL = Reportable Detection Limit								

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

Page 5 of 18 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID		SPX544	SPX545		SPX546	SPX547		
Sampling Date		2022/05/12	2022/05/12		2022/05/12	2022/05/12		
		16:15	16:30		12:55	13:45		
COC Number		877774-03-01	877774-03-01		877774-03-01	877774-03-01		
	UNITS	MW22-04S	MW22-04D	RDL	MW22-07	MW22-08	RDL	QC Batch
Dissolved Cobalt (Co)	ug/L	<0.50	<0.50	0.50	<0.50	<0.50	0.50	8001432
Dissolved Copper (Cu)	ug/L	1.5	1.1	0.90	1.5	1.5	0.90	8001432
Dissolved Iron (Fe)	ug/L	<100	<100	100	<100	<100	100	8001432
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	0.50	<0.50	<0.50	0.50	8001432
Dissolved Magnesium (Mg)	ug/L	19000	22000	50	35000	26000	50	8001432
Dissolved Manganese (Mn)	ug/L	<2.0	80	2.0	33	21	2.0	8001432
Dissolved Molybdenum (Mo)	ug/L	<0.50	2.4	0.50	3.8	2.7	0.50	8001432
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	1.0	<1.0	<1.0	1.0	8001432
Dissolved Phosphorus (P)	ug/L	<100	<100	100	<100	<100	100	8001432
Dissolved Potassium (K)	ug/L	2200	1900	200	2400	1700	200	8001432
Dissolved Selenium (Se)	ug/L	<2.0	<2.0	2.0	<2.0	<2.0	2.0	8001432
Dissolved Silicon (Si)	ug/L	2700	2800	50	5600	4300	50	8001432
Dissolved Silver (Ag)	ug/L	<0.090	<0.090	0.090	<0.090	<0.090	0.090	8001432
Dissolved Sodium (Na)	ug/L	7800	14000	100	13000	6700	100	8001432
Dissolved Strontium (Sr)	ug/L	150	120	1.0	160	98	1.0	8001432
Dissolved Thallium (Tl)	ug/L	<0.050	<0.050	0.050	<0.050	<0.050	0.050	8001432
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	5.0	<5.0	<5.0	5.0	8001432
Dissolved Uranium (U)	ug/L	0.27	0.74	0.10	0.53	0.56	0.10	8001432
Dissolved Vanadium (V)	ug/L	<0.50	<0.50	0.50	<0.50	<0.50	0.50	8001432
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	5.0	<5.0	<5.0	5.0	8001432
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

Page 6 of 18 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID		SPX548	SPX549		
Sampling Date		2022/05/12 10:50	2022/05/12 11:55		
COC Number		877774-03-01	877774-03-01		
	UNITS	MW22-09	MW22-10	RDL	QC Batch
Calculated Parameters					
Anion Sum	me/L	6.29	7.25	N/A	7999556
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	270	280	1.0	7999549
Calculated TDS	mg/L	310	390	1.0	7999560
Carb. Alkalinity (calc. as CaCO3)	mg/L	3.2	2.5	1.0	7999549
Cation Sum	me/L	6.43	7.12	N/A	7999556
Hardness (CaCO3)	mg/L	310	350	1.0	7999552
Ion Balance (% Difference)	%	1.05	0.880	N/A	7999554
Langelier Index (@ 20C)	N/A	0.920	0.981		7999557
Langelier Index (@ 4C)	N/A	0.671	0.732		7999558
Saturation pH (@ 20C)	N/A	7.19	7.00		7999557
Saturation pH (@ 4C)	N/A	7.44	7.25		7999558
Inorganics			1		
Total Ammonia-N	mg/L	0.059	0.095	0.050	8001695
Conductivity	umho/cm	580	680	1.0	8000939
Dissolved Organic Carbon	mg/L	0.59	1.6	0.40	8001605
Orthophosphate (P)	mg/L	<0.010	<0.010	0.010	8000919
рН	рН	8.11	7.99		8000937
Dissolved Sulphate (SO4)	mg/L	5.5	26	1.0	8000917
Alkalinity (Total as CaCO3)	mg/L	270	280	1.0	8000930
Dissolved Chloride (Cl-)	mg/L	25	8.9	1.0	8000916
Nitrite (N)	mg/L	<0.010	0.048	0.010	8000913
Nitrate (N)	mg/L	0.88	12.5	0.10	8000913
Nitrate + Nitrite (N)	mg/L	0.88	12.5	0.10	8000913
Metals	•		•		
Dissolved Aluminum (Al)	ug/L	9.2	6.8	4.9	8001432
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	0.50	8001432
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	1.0	8001432
Dissolved Barium (Ba)	ug/L	44	32	2.0	8001432
Dissolved Beryllium (Be)	ug/L	<0.40	<0.40	0.40	8001432
Dissolved Boron (B)	ug/L	16	<10	10	8001432
Dissolved Cadmium (Cd)	ug/L	<0.090	<0.090	0.090	8001432
Dissolved Calcium (Ca)	ug/L	63000	99000	200	8001432
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	5.0	8001432
Dissolved Cobalt (Co)	ug/L	<0.50	<0.50	0.50	8001432
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable					

Page 7 of 18 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Bureau Veritas ID		SPX548	SPX549		
Sampling Date		2022/05/12 10:50	2022/05/12 11:55		
COC Number		877774-03-01	877774-03-01		
	UNITS	MW22-09	MW22-10	RDL	QC Batch
Dissolved Copper (Cu)	ug/L	2.6	3.1	0.90	8001432
Dissolved Iron (Fe)	ug/L	<100	<100	100	8001432
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	0.50	8001432
Dissolved Magnesium (Mg)	ug/L	36000	25000	50	8001432
Dissolved Manganese (Mn)	ug/L	8.8	87	2.0	8001432
Dissolved Molybdenum (Mo)	ug/L	2.1	0.83	0.50	8001432
Dissolved Nickel (Ni)	ug/L	<1.0	1.0	1.0	8001432
Dissolved Phosphorus (P)	ug/L	100	110	100	8001432
Dissolved Potassium (K)	ug/L	2000	960	200	8001432
Dissolved Selenium (Se)	ug/L	<2.0	<2.0	2.0	8001432
Dissolved Silicon (Si)	ug/L	3900	3000	50	8001432
Dissolved Silver (Ag)	ug/L	<0.090	<0.090	0.090	8001432
Dissolved Sodium (Na)	ug/L	4700	1900	100	8001432
Dissolved Strontium (Sr)	ug/L	120	110	1.0	8001432
Dissolved Thallium (Tl)	ug/L	<0.050	<0.050	0.050	8001432
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	5.0	8001432
Dissolved Uranium (U)	ug/L	0.26	1.6	0.10	8001432
Dissolved Vanadium (V)	ug/L	<0.50	0.86	0.50	8001432
Dissolved Zinc (Zn)	ug/L	6.9	<5.0	5.0	8001432
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				-	

RCAP - COMPREHENSIVE (WATER)

TEST SUMMARY

Bureau Veritas ID:	SPX541
Sample ID:	MW22-01S
Matrix:	Water

Collected:	2022/05/12
Shipped: Received:	2022/05/13
neeenrea	2022/03/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8000930	N/A	2022/05/18	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7999549	N/A	2022/05/19	Automated Statchk
Chloride by Automated Colourimetry	KONE	8000916	N/A	2022/05/18	Alina Dobreanu
Conductivity	AT	8000939	N/A	2022/05/18	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8001605	N/A	2022/05/18	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7999552	N/A	2022/05/19	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8001432	N/A	2022/05/19	Arefa Dabhad
Ion Balance (% Difference)	CALC	7999554	N/A	2022/05/19	Automated Statchk
Anion and Cation Sum	CALC	7999556	N/A	2022/05/19	Automated Statchk
Total Ammonia-N	LACH/NH4	8001695	N/A	2022/05/19	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	8000913	N/A	2022/05/18	Samuel Law
рН	AT	8000937	2022/05/17	2022/05/18	Yogesh Patel
Orthophosphate	KONE	8000919	N/A	2022/05/18	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7999557	N/A	2022/05/19	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7999558	N/A	2022/05/19	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8000917	N/A	2022/05/18	Chandra Nandlal
Total Dissolved Solids (TDS calc)	CALC	7999560	N/A	2022/05/19	Automated Statchk

Bureau Veritas ID: SPX542 Sample ID: MW22-01D Matrix: Water

Collected:	2022/05/12
Shipped: Received:	2022/05/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8000930	N/A	2022/05/18	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7999549	N/A	2022/05/19	Automated Statchk
Chloride by Automated Colourimetry	KONE	8000916	N/A	2022/05/18	Alina Dobreanu
Conductivity	AT	8000939	N/A	2022/05/18	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8001605	N/A	2022/05/18	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7999552	N/A	2022/05/19	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8001432	N/A	2022/05/19	Arefa Dabhad
Ion Balance (% Difference)	CALC	7999554	N/A	2022/05/19	Automated Statchk
Anion and Cation Sum	CALC	7999556	N/A	2022/05/19	Automated Statchk
Total Ammonia-N	LACH/NH4	8001695	N/A	2022/05/19	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	8000913	N/A	2022/05/18	Samuel Law
рН	AT	8000937	2022/05/17	2022/05/18	Yogesh Patel
Orthophosphate	KONE	8000919	N/A	2022/05/18	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7999557	N/A	2022/05/19	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7999558	N/A	2022/05/19	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8000917	N/A	2022/05/18	Chandra Nandlal
Total Dissolved Solids (TDS calc)	CALC	7999560	N/A	2022/05/19	Automated Statchk

TEST SUMMARY

Bureau Veritas ID:	SPX543	Collected:	2022/05/12
Sample ID:	MW22-02	Shipped:	2022/05/13
Matrix:	Water	Received:	

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8000930	N/A	2022/05/18	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7999549	N/A	2022/05/19	Automated Statchk
Chloride by Automated Colourimetry	KONE	8000916	N/A	2022/05/18	Alina Dobreanu
Conductivity	AT	8000939	N/A	2022/05/18	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8001605	N/A	2022/05/18	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7999552	N/A	2022/05/19	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8001432	N/A	2022/05/19	Arefa Dabhad
Ion Balance (% Difference)	CALC	7999554	N/A	2022/05/19	Automated Statchk
Anion and Cation Sum	CALC	7999556	N/A	2022/05/19	Automated Statchk
Total Ammonia-N	LACH/NH4	8001695	N/A	2022/05/19	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	8000913	N/A	2022/05/18	Samuel Law
рН	AT	8000937	2022/05/17	2022/05/18	Yogesh Patel
Orthophosphate	KONE	8000919	N/A	2022/05/18	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7999557	N/A	2022/05/19	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7999558	N/A	2022/05/19	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8000917	N/A	2022/05/18	Chandra Nandlal
Total Dissolved Solids (TDS calc)	CALC	7999560	N/A	2022/05/19	Automated Statchk

Bureau Veritas ID: SPX543 Dup Sample ID: MW22-02 Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8000930	N/A	2022/05/18	Yogesh Patel
Conductivity	AT	8000939	N/A	2022/05/18	Yogesh Patel
рН	AT	8000937	2022/05/17	2022/05/18	Yogesh Patel

Bureau Veritas ID:	SPX544
Sample ID:	MW22-04S
Matrix:	Water

Collected:	2022/05/12
Shipped:	
Received:	2022/05/13

Collected: 2022/05/12

Received: 2022/05/13

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8000930	N/A	2022/05/18	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7999549	N/A	2022/05/19	Automated Statchk
Chloride by Automated Colourimetry	KONE	8000916	N/A	2022/05/18	Alina Dobreanu
Conductivity	AT	8000939	N/A	2022/05/18	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8001605	N/A	2022/05/18	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7999552	N/A	2022/05/19	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8001432	N/A	2022/05/19	Arefa Dabhad
Ion Balance (% Difference)	CALC	7999554	N/A	2022/05/19	Automated Statchk
Anion and Cation Sum	CALC	7999556	N/A	2022/05/19	Automated Statchk
Total Ammonia-N	LACH/NH4	8001695	N/A	2022/05/19	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	8000913	N/A	2022/05/18	Samuel Law
рН	AT	8000937	2022/05/17	2022/05/18	Yogesh Patel
Orthophosphate	KONE	8000919	N/A	2022/05/18	Chandra Nandlal

Page 10 of 18

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

TEST SUMMARY

Bureau Veritas ID:	SPX544
Sample ID:	MW22-04S
Matrix:	Water

Collected: Shipped:	2022/05/12
Received:	2022/05/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sat. pH and Langelier Index (@ 20C)	CALC	7999557	N/A	2022/05/19	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7999558	N/A	2022/05/19	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8000917	N/A	2022/05/18	Chandra Nandlal
Total Dissolved Solids (TDS calc)	CALC	7999560	N/A	2022/05/19	Automated Statchk

Bureau Veritas ID: SPX545 Sample ID: MW22-04D Matrix: Water

Collected:	2022/05/12
Shipped:	
Received:	2022/05/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8000930	N/A	2022/05/18	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7999549	N/A	2022/05/19	Automated Statchk
Chloride by Automated Colourimetry	KONE	8000916	N/A	2022/05/18	Alina Dobreanu
Conductivity	AT	8000939	N/A	2022/05/18	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8001605	N/A	2022/05/18	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7999552	N/A	2022/05/19	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8001432	N/A	2022/05/19	Arefa Dabhad
Ion Balance (% Difference)	CALC	7999554	N/A	2022/05/19	Automated Statchk
Anion and Cation Sum	CALC	7999556	N/A	2022/05/19	Automated Statchk
Total Ammonia-N	LACH/NH4	8001695	N/A	2022/05/19	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	8000913	N/A	2022/05/18	Samuel Law
рН	AT	8000937	2022/05/17	2022/05/18	Yogesh Patel
Orthophosphate	KONE	8000919	N/A	2022/05/18	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7999557	N/A	2022/05/19	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7999558	N/A	2022/05/19	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8000917	N/A	2022/05/18	Chandra Nandlal
Total Dissolved Solids (TDS calc)	CALC	7999560	N/A	2022/05/19	Automated Statchk

Bureau Veritas ID: SPX546 Sample ID: MW22-07 Matrix: Water Collected: 2022/05/12 Shipped: Received: 2022/05/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8000930	N/A	2022/05/18	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7999549	N/A	2022/05/19	Automated Statchk
Chloride by Automated Colourimetry	KONE	8000916	N/A	2022/05/18	Alina Dobreanu
Conductivity	AT	8000939	N/A	2022/05/18	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8001605	N/A	2022/05/18	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7999552	N/A	2022/05/19	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8001432	N/A	2022/05/19	Arefa Dabhad
Ion Balance (% Difference)	CALC	7999554	N/A	2022/05/19	Automated Statchk
Anion and Cation Sum	CALC	7999556	N/A	2022/05/19	Automated Statchk
Total Ammonia-N	LACH/NH4	8001695	N/A	2022/05/19	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	8000913	N/A	2022/05/18	Samuel Law
рН	AT	8000937	2022/05/17	2022/05/18	Yogesh Patel

Page 11 of 18

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

TEST SUMMARY

Bureau Veritas ID: SPX546 Sample ID: MW22-07 Matrix: Water

Collected:	2022/05/12
Shipped:	
Received:	2022/05/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Orthophosphate	KONE	8000919	N/A	2022/05/18	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7999557	N/A	2022/05/19	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7999558	N/A	2022/05/19	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8000917	N/A	2022/05/18	Chandra Nandlal
Total Dissolved Solids (TDS calc)	CALC	7999560	N/A	2022/05/19	Automated Statchk

Bureau Veritas ID:	SPX547
Sample ID:	MW22-08
Matrix:	Water

Collected: 2022/05/12 Shipped: Received: 2022/05/13

Collected: 2022/05/12

Received: 2022/05/13

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8000930	N/A	2022/05/18	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7999549	N/A	2022/05/19	Automated Statchk
Chloride by Automated Colourimetry	KONE	8000916	N/A	2022/05/18	Alina Dobreanu
Conductivity	AT	8000939	N/A	2022/05/18	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8001605	N/A	2022/05/18	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7999552	N/A	2022/05/19	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8001432	N/A	2022/05/19	Arefa Dabhad
Ion Balance (% Difference)	CALC	7999554	N/A	2022/05/19	Automated Statchk
Anion and Cation Sum	CALC	7999556	N/A	2022/05/19	Automated Statchk
Total Ammonia-N	LACH/NH4	8001695	N/A	2022/05/19	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	8000913	N/A	2022/05/18	Samuel Law
рН	AT	8000937	2022/05/17	2022/05/18	Yogesh Patel
Orthophosphate	KONE	8000919	N/A	2022/05/18	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7999557	N/A	2022/05/19	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7999558	N/A	2022/05/19	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8000917	N/A	2022/05/18	Chandra Nandlal
Total Dissolved Solids (TDS calc)	CALC	7999560	N/A	2022/05/19	Automated Statchk

Bureau Veritas ID:	SPX548
Sample ID:	MW22-09
Matrix:	Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8000930	N/A	2022/05/18	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7999549	N/A	2022/05/19	Automated Statchk
Chloride by Automated Colourimetry	KONE	8000916	N/A	2022/05/18	Alina Dobreanu
Conductivity	AT	8000939	N/A	2022/05/18	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8001605	N/A	2022/05/18	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7999552	N/A	2022/05/19	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8001432	N/A	2022/05/19	Arefa Dabhad
Ion Balance (% Difference)	CALC	7999554	N/A	2022/05/19	Automated Statchk
Anion and Cation Sum	CALC	7999556	N/A	2022/05/19	Automated Statchk
Total Ammonia-N	LACH/NH4	8001695	N/A	2022/05/19	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	8000913	N/A	2022/05/18	Samuel Law

Page 12 of 18

TEST SUMMARY

Bureau Veritas ID:	SPX548
Sample ID:	MW22-09
Matrix:	Water

Collected:	2022/05/12
Shipped:	
Received:	2022/05/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
рН	AT	8000937	2022/05/17	2022/05/18	Yogesh Patel
Orthophosphate	KONE	8000919	N/A	2022/05/18	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7999557	N/A	2022/05/19	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7999558	N/A	2022/05/19	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8000917	N/A	2022/05/18	Chandra Nandlal
Total Dissolved Solids (TDS calc)	CALC	7999560	N/A	2022/05/19	Automated Statchk

Bureau Veritas ID: SPX549 Sample ID: MW22-10 Matrix: Water

Collected:	2022/05/12
Shipped:	
Received:	2022/05/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8000930	N/A	2022/05/18	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7999549	N/A	2022/05/19	Automated Statchk
Chloride by Automated Colourimetry	KONE	8000916	N/A	2022/05/18	Alina Dobreanu
Conductivity	AT	8000939	N/A	2022/05/18	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8001605	N/A	2022/05/18	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7999552	N/A	2022/05/19	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8001432	N/A	2022/05/19	Arefa Dabhad
Ion Balance (% Difference)	CALC	7999554	N/A	2022/05/19	Automated Statchk
Anion and Cation Sum	CALC	7999556	N/A	2022/05/19	Automated Statchk
Total Ammonia-N	LACH/NH4	8001695	N/A	2022/05/19	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	8000913	N/A	2022/05/18	Samuel Law
рН	AT	8000937	2022/05/17	2022/05/18	Yogesh Patel
Orthophosphate	KONE	8000919	N/A	2022/05/18	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7999557	N/A	2022/05/19	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7999558	N/A	2022/05/19	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8000917	N/A	2022/05/18	Chandra Nandlal
Total Dissolved Solids (TDS calc)	CALC	7999560	N/A	2022/05/19	Automated Statchk

GENERAL COMMENTS

Revised report[5/20/2022]: project number revised.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

GM BluePlan Engineering Limited Client Project #: 121123 Sampler Initials: AF

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8000913	Nitrate (N)	2022/05/18	NC	80 - 120	100	80 - 120	<0.10	mg/L	1.1	20
8000913	Nitrite (N)	2022/05/18	99	80 - 120	104	80 - 120	<0.010	mg/L		
8000916	Dissolved Chloride (Cl-)	2022/05/18	NC	80 - 120	106	80 - 120	<1.0	mg/L	0.52	20
8000917	Dissolved Sulphate (SO4)	2022/05/18	NC	75 - 125	97	80 - 120	<1.0	mg/L	0.18	20
8000919	Orthophosphate (P)	2022/05/18	107	75 - 125	101	80 - 120	<0.010	mg/L	7.2	25
8000930	Alkalinity (Total as CaCO3)	2022/05/18			96	85 - 115	<1.0	mg/L	0.055	20
8000937	рН	2022/05/18			102	98 - 103			0.39	N/A
8000939	Conductivity	2022/05/18			102	85 - 115	<1.0	umho/cm	0.60	25
8001432	Dissolved Aluminum (Al)	2022/05/19	104	80 - 120	99	80 - 120	<4.9	ug/L		
8001432	Dissolved Antimony (Sb)	2022/05/19	110	80 - 120	100	80 - 120	<0.50	ug/L	NC	20
8001432	Dissolved Arsenic (As)	2022/05/19	102	80 - 120	99	80 - 120	<1.0	ug/L	NC	20
8001432	Dissolved Barium (Ba)	2022/05/19	NC	80 - 120	99	80 - 120	<2.0	ug/L	0.70	20
8001432	Dissolved Beryllium (Be)	2022/05/19	105	80 - 120	96	80 - 120	<0.40	ug/L	NC	20
8001432	Dissolved Boron (B)	2022/05/19	98	80 - 120	93	80 - 120	<10	ug/L	0.39	20
8001432	Dissolved Cadmium (Cd)	2022/05/19	102	80 - 120	99	80 - 120	<0.090	ug/L	NC	20
8001432	Dissolved Calcium (Ca)	2022/05/19	NC	80 - 120	97	80 - 120	<200	ug/L		
8001432	Dissolved Chromium (Cr)	2022/05/19	96	80 - 120	94	80 - 120	<5.0	ug/L	NC	20
8001432	Dissolved Cobalt (Co)	2022/05/19	97	80 - 120	97	80 - 120	<0.50	ug/L	0.68	20
8001432	Dissolved Copper (Cu)	2022/05/19	102	80 - 120	98	80 - 120	<0.90	ug/L	1.3	20
8001432	Dissolved Iron (Fe)	2022/05/19	99	80 - 120	98	80 - 120	<100	ug/L		
8001432	Dissolved Lead (Pb)	2022/05/19	94	80 - 120	97	80 - 120	<0.50	ug/L	NC	20
8001432	Dissolved Magnesium (Mg)	2022/05/19	NC	80 - 120	100	80 - 120	<50	ug/L		
8001432	Dissolved Manganese (Mn)	2022/05/19	NC	80 - 120	100	80 - 120	<2.0	ug/L		
8001432	Dissolved Molybdenum (Mo)	2022/05/19	111	80 - 120	102	80 - 120	<0.50	ug/L	NC	20
8001432	Dissolved Nickel (Ni)	2022/05/19	96	80 - 120	97	80 - 120	<1.0	ug/L	4.4	20
8001432	Dissolved Phosphorus (P)	2022/05/19	110	80 - 120	111	80 - 120	<100	ug/L		
8001432	Dissolved Potassium (K)	2022/05/19	103	80 - 120	101	80 - 120	<200	ug/L		
8001432	Dissolved Selenium (Se)	2022/05/19	98	80 - 120	96	80 - 120	<2.0	ug/L	NC	20
8001432	Dissolved Silicon (Si)	2022/05/19	103	80 - 120	98	80 - 120	<50	ug/L		
8001432	Dissolved Silver (Ag)	2022/05/19	98	80 - 120	96	80 - 120	<0.090	ug/L	NC	20
8001432	Dissolved Sodium (Na)	2022/05/19	NC	80 - 120	99	80 - 120	<100	ug/L	0.75	20

Page 15 of 18

QUALITY ASSURANCE REPORT(CONT'D)

GM BluePlan Engineering Limited Client Project #: 121123 Sampler Initials: AF

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8001432	Dissolved Strontium (Sr)	2022/05/19	101	80 - 120	98	80 - 120	<1.0	ug/L		
8001432	Dissolved Thallium (TI)	2022/05/19	92	80 - 120	98	80 - 120	<0.050	ug/L	NC	20
8001432	Dissolved Titanium (Ti)	2022/05/19	103	80 - 120	94	80 - 120	<5.0	ug/L		
8001432	Dissolved Uranium (U)	2022/05/19	91	80 - 120	95	80 - 120	<0.10	ug/L	0	20
8001432	Dissolved Vanadium (V)	2022/05/19	97	80 - 120	94	80 - 120	<0.50	ug/L	NC	20
8001432	Dissolved Zinc (Zn)	2022/05/19	94	80 - 120	94	80 - 120	<5.0	ug/L	NC	20
8001605	Dissolved Organic Carbon	2022/05/18	95	80 - 120	98	80 - 120	<0.40	mg/L	2.4	20
8001695	Total Ammonia-N	2022/05/19	92	75 - 125	96	80 - 120	<0.050	mg/L	6.1	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	REAU RITAS	Bureau Veritas 6740 Campobello Road, Mississauga, On	tario Canada L5N 2	L8 Tel:(905) 817-57	'00 Toll-free.800-	563-6266 Fax.(905) 817-57	77 www.bvna.com						сн,		3-May-22 10:00	Page of
		NVOICE TO:			REPO	RT TO:					PROJEC	T INFORMAT	ION:		Ashton Gibson		
Compar		Plan Engineering Limited	Company	Name:				0	uotation	#.	C202	51		A UPSA -			tle Order #:
Attentio			Attention	Abdi Fa	arah			P	.0.#:		-				C2	D0995	
Address	Guelph ON N1K	Rd W Block C, Unit 2	Address:					P	roject:		121	123	1.1		~~~		377774
Tel:	(519) 824-8150						-	P	roject Na	me:				_	ASR	ENV-644	,act Manager:
Email:	info@gmbluepla	Fax: (519) 824-8089		abdi fa	arah@gmblue	Fax:		1000	ite #:		- 1 1	- / ^ 1	-				Ashton Gibson
and the second second			Email:	all and a second s	and the second	pian.ca			ampled E		AI	- /M BE SPECIFIC	0	_	_	C#877774-03-01	
	SUBMITTED ON T	IG WATER OR WATER INTENDED THE BUREAU VERITAS DRINKING	WATER CHAIN	OF CUSTODY	MUSTBE			ANAL	TSIS REI	QUESTED	PLEASE	BE SPECIFIC	-			Turnaround Time (TAT) Please provide advance notice	
	Regulation 153 (2011)	Other Regulation	15	Special In	structions	circle): /I										tandard) TAT:	
Table	1 Res/Park Mediu		111	opecial in	structions											d if Rush TAT is not specified);	
Table		e Reg 558. Storm Sewer E		hi n. '		easi / Cr										" = 5-7 Working days for most tests Standard TAT for certain tests such as	BOD and Diovins/Europs are > 5
Table				1.1.1.1.5		d) p	ensiv								days - contact	your Project Manager for details.	
		PWQO Reg 406 Tab	le	1 Art		als	preh									Rush TAT (if applies to entire sut	A CONTRACTOR AND A CONTRACT
	Include Colton			No 1		Field Filtered (please c Metals Hg / Cr VI	Com								Date Required Rush Confirm	ation Number.	ime Required:
- 1	Sample Barcode Label	a on Certificate of Analysis (Y/N)? Sample (Location) Identification		Time Complete		Fiel	- db								# of Bottles		(call lab for #)
	Comple Darcoce Laber	14	Date Sampled	Time Sampled	Grand		×/								-	Com	ments
1		MW 22-015	05/12	15:20	Water		V								5		14
2		MW 22-01D	05/12	K:30	Water		\checkmark		100						5		
3		122.6 005	05/12		Wafer										5		
4							1						-				
		MW22-045			Water		1								5		
5		MW22-040	05/12	16:30	Water		\checkmark								5		
6		MW 22-07	05/12	12:55	Water		\checkmark				RIC	20			5		
7		MW 22-08	05/12	13:45	Water		1	1		NN	The.				5		
8		MW22-09	251.2	10:00	Ground	-			ECD	ħ.					5		
9	1				Wate		/	×	**								
		MW 22-10	05/12	11:55	Watt		V								5		
10																	
-	RELINCUISHED BY IS	Date: (YY/I	0	20		Y: (Signature/		Date: (YY/MA	1000		ime	# jars us not sub			Standard Const	tory Use Only	
		22/	05/139.	52				2022/05/	13	10	00	1	Carl I	Time Sensitive	Temperatu	ure (°C) on Recei Custody	
UNLESS	OTHERWISE AGREED TO IN WI	RITING, WORK SUBMITTED ON THIS CHAIN	DE CUSTODY IS SU	RIECT TO RUPEAU	VEDITARIC CTAN	NRD TROUC	ND COUDE	2072/00	\$13	18:	10	UTUT IC	and the second		81	7/10 Presen	
ACKNOW	LEDGMENT AND ACCEPTANCE	OF OUR TERMS WHICH ARE AVAILABLE FO	R VIEWING AT WWW	N.BVNA.COM/TERM	S-AND-CONDITIO	NS. ASH	ma	Salaring of TH	a CHAIN	UF CUSTO	JUT DOCUM	MENTIS	-			ANTINE PERCENTION OF A DESCRIPTION OF A DESCRIPANTA DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCR	Bureau Veritas Yellow: Clier
TT IS TH	E RESPONSIBILITY OF THE REL	222/ RITING, WORK SUBMITTED ON THIS CHAIN OF OUR TERMS WHICH ARE AVAILABLE FO INQUISHER TO ENSURE THE ACCURACY ON HOLD TIME AND PACKAGE INFORMATION	THE CHAIN OF CU	STODY RECORD. A		HAIN OF CUST	ODY MAY RE	SULT IN ANALYTICAL	TAT DEL	AYS. 2	418:	711	AMPLES	MUST BE KEPT (UNTIL DELI	COOL (< 10° C) I VERY TO BUREA	FROM TIME OF SAMPLING U VERITAS	on ice,/
Store P	AINER, PRESERVATION	, HOLD TIME AND PACKAGE INFORMATION	CAN BE VIEWED AT	WWW.BVNA.COM	RESOURCES/CH/	AIN-OF-CUSTO	T-PORma.	au Veritas Canada (201				80	的功能		We she with	新設在設備的電気	414/5

APPENDIX F2: LABORATORY CERTIFICATES OF ANALYSIS SURFACE WATER FROM ON-SITE WETLAND AREAS

Your Project #: 121123 Your C.O.C. #: 740605-01-01

Attention: Mark Ongarato

GM BluePlan Engineering Limited 650 Woodlawn Rd W Block C, Unit 2 Guelph, ON CANADA N1K 1B8

> Report Date: 2023/01/13 Report #: R7466689 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C307788

Received: 2023/01/10, 15:50

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	2	N/A	2023/01/11	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	2	N/A	2023/01/12	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	2	N/A	2023/01/12	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	2	N/A	2023/01/11	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/01/12	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	2	N/A	2023/01/13	CAM SOP 00102/00408/00447	SM 2340 B
Dissolved Metals by ICPMS	2	N/A	2023/01/13	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	2	N/A	2023/01/13		
Anion and Cation Sum	2	N/A	2023/01/13		
Total Ammonia-N	2	N/A	2023/01/12	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	2	N/A	2023/01/12	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/01/11	2023/01/11	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	2	N/A	2023/01/12	CAM SOP-00461	SM 23 4500-P E m
Sat. pH and Langelier Index (@ 20C)	2	N/A	2023/01/13		Auto Calc
Sat. pH and Langelier Index (@ 4C)	2	N/A	2023/01/13		Auto Calc
Sulphate by Automated Colourimetry	2	N/A	2023/01/11	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	2	N/A	2023/01/13		Auto Calc

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.

Page 1 of 11

Your Project #: 121123 Your C.O.C. #: 740605-01-01

Attention: Mark Ongarato

GM BluePlan Engineering Limited 650 Woodlawn Rd W Block C, Unit 2 Guelph, ON CANADA N1K 1B8

> Report Date: 2023/01/13 Report #: R7466689 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C307788

Received: 2023/01/10, 15:50

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID		UTP935			UTP935			UTP936		
Sampling Date		2023/01/06 10:22			2023/01/06 10:22			2023/01/06 12:27		
COC Number		740605-01-01			740605-01-01			740605-01-01		
	UNITS	WET-02	RDL	QC Batch	WET-02 Lab-Dup	RDL	QC Batch	WET-06	RDL	QC Batch
Calculated Parameters			·			·			·	
Anion Sum	me/L	2.77	N/A	8441269				1.67	N/A	8441269
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	87	1.0	8441265				30	1.0	8441265
Calculated TDS	mg/L	160	1.0	8441261				110	1.0	8441261
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	8441265				<1.0	1.0	8441265
Cation Sum	me/L	2.72	N/A	8441269				1.75	N/A	8441269
Hardness (CaCO3)	mg/L	120	1.0	8441267				73	1.0	8441267
Ion Balance (% Difference)	%	NC	N/A	8441268				NC	N/A	8441268
Langelier Index (@ 20C)	N/A	-0.555		8441259				-1.63		8441259
Langelier Index (@ 4C)	N/A	-0.805		8441260				-1.88		8441260
Saturation pH (@ 20C)	N/A	7.94		8441259				8.61		8441259
Saturation pH (@ 4C)	N/A	8.19		8441260				8.86		8441260
Inorganics		•			•					
Total Ammonia-N	mg/L	0.33	0.050	8443439				0.34	0.050	8443439
Conductivity	umho/cm	260	1.0	8443881				180	1.0	8443881
Dissolved Organic Carbon	mg/L	13	0.40	8442749				8.9	0.40	8442749
Orthophosphate (P)	mg/L	1.3	0.050	8442992	1.3	0.050	8442992	0.13	0.010	8442992
рН	рН	7.38		8443870				6.98		8443870
Dissolved Sulphate (SO4)	mg/L	36	1.0	8443839	36	1.0	8443839	38	1.0	8443839
Alkalinity (Total as CaCO3)	mg/L	87	1.0	8443876				30	1.0	8443876
Dissolved Chloride (Cl-)	mg/L	5.0	1.0	8443842	5.1	1.0	8443842	8.3	1.0	8443842
Nitrite (N)	mg/L	0.070	0.010	8442755	0.071	0.010	8442755	0.017	0.010	8442755
Nitrate (N)	mg/L	0.59	0.10	8442755	0.61	0.10	8442755	0.62	0.10	8442755
Nitrate + Nitrite (N)	mg/L	0.66	0.10	8442755	0.68	0.10	8442755	0.64	0.10	8442755
Metals										
Dissolved Aluminum (Al)	ug/L	10	4.9	8443218				11	4.9	8443218
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	8443218				<0.50	0.50	8443218
Dissolved Arsenic (As)	ug/L	1.2	1.0	8443218				<1.0	1.0	8443218
Dissolved Barium (Ba)	ug/L	13	2.0	8443218				11	2.0	8443218
Dissolved Beryllium (Be)	ug/L	<0.40	0.40	8443218				<0.40	0.40	8443218
Dissolved Boron (B)	ug/L	14	10	8443218				30	10	8443218
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	8443218				<0.090	0.090	8443218
Dissolved Calcium (Ca)	ug/L	31000	200	8443218				18000	200	8443218
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	8443218				<5.0	5.0	8443218
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
Lab Dup - Laboratory Initiated Duy	alicata									

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID		UTP935			UTP935			UTP936		
Sampling Date		2023/01/06 10:22			2023/01/06 10:22			2023/01/06 12:27		
COC Number		740605-01-01			740605-01-01			740605-01-01		
	UNITS	WET-02	RDL	QC Batch	WET-02 Lab-Dup	RDL	QC Batch	WET-06	RDL	QC Batch
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	8443218				<0.50	0.50	8443218
Dissolved Copper (Cu)	ug/L	4.5	0.90	8443218				2.1	0.90	8443218
Dissolved Iron (Fe)	ug/L	<100	100	8443218				<100	100	8443218
Dissolved Lead (Pb)	ug/L	<0.50	0.50	8443218				<0.50	0.50	8443218
Dissolved Magnesium (Mg)	ug/L	10000	50	8443218				6600	50	8443218
Dissolved Manganese (Mn)	ug/L	14	2.0	8443218				12	2.0	8443218
Dissolved Molybdenum (Mo)	ug/L	2.0	0.50	8443218				<0.50	0.50	8443218
Dissolved Nickel (Ni)	ug/L	<1.0	1.0	8443218				<1.0	1.0	8443218
Dissolved Phosphorus (P)	ug/L	1400	100	8443218				240	100	8443218
Dissolved Potassium (K)	ug/L	9300	200	8443218				6600	200	8443218
Dissolved Selenium (Se)	ug/L	<2.0	2.0	8443218				<2.0	2.0	8443218
Dissolved Silicon (Si)	ug/L	3400	50	8443218				1600	50	8443218
Dissolved Silver (Ag)	ug/L	<0.090	0.090	8443218				<0.090	0.090	8443218
Dissolved Sodium (Na)	ug/L	1600	100	8443218				2400	100	8443218
Dissolved Strontium (Sr)	ug/L	33	1.0	8443218				22	1.0	8443218
Dissolved Thallium (Tl)	ug/L	<0.050	0.050	8443218				<0.050	0.050	8443218
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	8443218				<5.0	5.0	8443218
Dissolved Uranium (U)	ug/L	<0.10	0.10	8443218				<0.10	0.10	8443218
Dissolved Vanadium (V)	ug/L	<0.50	0.50	8443218				<0.50	0.50	8443218
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	8443218				<5.0	5.0	8443218

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Bureau Veritas ID		UTP936								
Sampling Date		2023/01/06 12:27								
COC Number		740605-01-01								
	UNITS	WET-06 Lab-Dup	RDL	QC Batch						
Inorganics										
Dissolved Organic Carbon	mg/L	8.7	0.40	8442749						
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate										

TEST SUMMARY

Bureau Veritas ID:	UTP935	Collected:	2023/01/06
Sample ID:	WET-02	Shipped:	
Matrix:	Water	Received:	2023/01/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8443876	N/A	2023/01/11	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	8441265	N/A	2023/01/12	Automated Statchk
Chloride by Automated Colourimetry	KONE	8443842	N/A	2023/01/12	Samuel Law
Conductivity	AT	8443881	N/A	2023/01/11	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8442749	N/A	2023/01/12	Gyulshen Idriz
Hardness (calculated as CaCO3)		8441267	N/A	2023/01/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8443218	N/A	2023/01/13	Prempal Bhatti
Ion Balance (% Difference)	CALC	8441268	N/A	2023/01/13	Automated Statchk
Anion and Cation Sum	CALC	8441269	N/A	2023/01/13	Automated Statchk
Total Ammonia-N	LACH/NH4	8443439	N/A	2023/01/12	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	8442755	N/A	2023/01/12	Chandra Nandlal
рН	AT	8443870	2023/01/11	2023/01/11	Surinder Rai
Orthophosphate	KONE	8442992	N/A	2023/01/12	Massarat Jan
Sat. pH and Langelier Index (@ 20C)	CALC	8441259	N/A	2023/01/13	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8441260	N/A	2023/01/13	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8443839	N/A	2023/01/11	Samuel Law
Total Dissolved Solids (TDS calc)	CALC	8441261	N/A	2023/01/13	Automated Statchk

Bureau Veritas ID: UTP935 Dup Sample ID: WET-02 Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride by Automated Colourimetry	KONE	8443842	N/A	2023/01/12	Samuel Law
Nitrate & Nitrite as Nitrogen in Water	LACH	8442755	N/A	2023/01/12	Chandra Nandlal
Orthophosphate	KONE	8442992	N/A	2023/01/12	Massarat Jan
Sulphate by Automated Colourimetry	KONE	8443839	N/A	2023/01/11	Samuel Law

Bureau Veritas ID:	UTP936
Sample ID:	WET-06
Matrix:	Water

Collected:	2023/01/06
Shipped:	

Received: 2023/01/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8443876	N/A	2023/01/11	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	8441265	N/A	2023/01/12	Automated Statchk
Chloride by Automated Colourimetry	KONE	8443842	N/A	2023/01/12	Samuel Law
Conductivity	AT	8443881	N/A	2023/01/11	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8442749	N/A	2023/01/12	Gyulshen Idriz
Hardness (calculated as CaCO3)		8441267	N/A	2023/01/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8443218	N/A	2023/01/13	Prempal Bhatti
Ion Balance (% Difference)	CALC	8441268	N/A	2023/01/13	Automated Statchk
Anion and Cation Sum	CALC	8441269	N/A	2023/01/13	Automated Statchk
Total Ammonia-N	LACH/NH4	8443439	N/A	2023/01/12	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	8442755	N/A	2023/01/12	Chandra Nandlal
рН	AT	8443870	2023/01/11	2023/01/11	Surinder Rai

Page 5 of 11

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

Collected: 2023/01/06 Shipped:

Received: 2023/01/10

TEST SUMMARY

Bureau Veritas ID: UTP936 Sample ID: WET-06 Matrix: Water					Collected: 2023/01/06 Shipped: Received: 2023/01/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Orthophosphate	KONE	8442992	N/A	2023/01/12	Massarat Jan
Sat. pH and Langelier Index (@ 20C)	CALC	8441259	N/A	2023/01/13	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8441260	N/A	2023/01/13	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8443839	N/A	2023/01/11	Samuel Law
Total Dissolved Solids (TDS calc)	CALC	8441261	N/A	2023/01/13	Automated Statchk
Bureau Veritas ID: UTP936 Dup Sample ID: WET-06 Matrix: Water					Collected: 2023/01/06 Shipped: Received: 2023/01/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8442749	N/A	2023/01/12	Gyulshen Idriz

GENERAL COMMENTS

Results relate only to the items tested.

Page 7 of 11 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

QUALITY ASSURANCE REPORT

GM BluePlan Engineering Limited Client Project #: 121123 Sampler Initials: MO

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8442749	Dissolved Organic Carbon	2023/01/12	87	80 - 120	96	80 - 120	<0.40	mg/L	2.5	20
8442755	Nitrate (N)	2023/01/12	100	80 - 120	102	80 - 120	<0.10	mg/L	2.9	20
8442755	Nitrite (N)	2023/01/12	101	80 - 120	106	80 - 120	<0.010	mg/L	2.3	20
8442992	Orthophosphate (P)	2023/01/12	N/C	75 - 125	91	80 - 120	<0.010	mg/L	1.7	20
8443218	Dissolved Aluminum (Al)	2023/01/13	101	80 - 120	99	80 - 120	<4.9	ug/L		
8443218	Dissolved Antimony (Sb)	2023/01/13	107	80 - 120	103	80 - 120	<0.50	ug/L	NC	20
8443218	Dissolved Arsenic (As)	2023/01/13	104	80 - 120	100	80 - 120	<1.0	ug/L	NC	20
8443218	Dissolved Barium (Ba)	2023/01/13	100	80 - 120	97	80 - 120	<2.0	ug/L	0.46	20
8443218	Dissolved Beryllium (Be)	2023/01/13	102	80 - 120	99	80 - 120	<0.40	ug/L	NC	20
8443218	Dissolved Boron (B)	2023/01/13	100	80 - 120	98	80 - 120	<10	ug/L	0.44	20
8443218	Dissolved Cadmium (Cd)	2023/01/13	104	80 - 120	100	80 - 120	<0.090	ug/L	NC	20
8443218	Dissolved Calcium (Ca)	2023/01/13	NC	80 - 120	96	80 - 120	<200	ug/L		
8443218	Dissolved Chromium (Cr)	2023/01/13	101	80 - 120	98	80 - 120	<5.0	ug/L	NC	20
8443218	Dissolved Cobalt (Co)	2023/01/13	100	80 - 120	99	80 - 120	<0.50	ug/L	NC	20
8443218	Dissolved Copper (Cu)	2023/01/13	101	80 - 120	100	80 - 120	<0.90	ug/L	14	20
8443218	Dissolved Iron (Fe)	2023/01/13	103	80 - 120	100	80 - 120	<100	ug/L		
8443218	Dissolved Lead (Pb)	2023/01/13	99	80 - 120	97	80 - 120	<0.50	ug/L	NC	20
8443218	Dissolved Magnesium (Mg)	2023/01/13	103	80 - 120	99	80 - 120	<50	ug/L		
8443218	Dissolved Manganese (Mn)	2023/01/13	102	80 - 120	99	80 - 120	<2.0	ug/L		
8443218	Dissolved Molybdenum (Mo)	2023/01/13	107	80 - 120	103	80 - 120	<0.50	ug/L	NC	20
8443218	Dissolved Nickel (Ni)	2023/01/13	102	80 - 120	100	80 - 120	<1.0	ug/L	NC	20
8443218	Dissolved Phosphorus (P)	2023/01/13	106	80 - 120	114	80 - 120	<100	ug/L		
8443218	Dissolved Potassium (K)	2023/01/13	103	80 - 120	100	80 - 120	<200	ug/L		
8443218	Dissolved Selenium (Se)	2023/01/13	102	80 - 120	101	80 - 120	<2.0	ug/L	NC	20
8443218	Dissolved Silicon (Si)	2023/01/13	100	80 - 120	98	80 - 120	<50	ug/L		
8443218	Dissolved Silver (Ag)	2023/01/13	105	80 - 120	101	80 - 120	<0.090	ug/L	NC	20
8443218	Dissolved Sodium (Na)	2023/01/13	103	80 - 120	98	80 - 120	<100	ug/L	0.022	20
8443218	Dissolved Strontium (Sr)	2023/01/13	104	80 - 120	100	80 - 120	<1.0	ug/L		
8443218	Dissolved Thallium (TI)	2023/01/13	102	80 - 120	99	80 - 120	<0.050	ug/L	NC	20
8443218	Dissolved Titanium (Ti)	2023/01/13	100	80 - 120	98	80 - 120	<5.0	ug/L		
8443218	Dissolved Uranium (U)	2023/01/13	104	80 - 120	99	80 - 120	<0.10	ug/L	2.2	20

Page 8 of 11

QUALITY ASSURANCE REPORT(CONT'D)

GM BluePlan Engineering Limited Client Project #: 121123 Sampler Initials: MO

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8443218	Dissolved Vanadium (V)	2023/01/13	104	80 - 120	101	80 - 120	<0.50	ug/L	NC	20
8443218	Dissolved Zinc (Zn)	2023/01/13	102	80 - 120	101	80 - 120	<5.0	ug/L	NC	20
8443439	Total Ammonia-N	2023/01/12	99	75 - 125	99	80 - 120	<0.050	mg/L	4.8	20
8443839	Dissolved Sulphate (SO4)	2023/01/11	NC	75 - 125	99	80 - 120	<1.0	mg/L	1.2	20
8443842	Dissolved Chloride (Cl-)	2023/01/12	113	80 - 120	106	80 - 120	<1.0	mg/L	1.5	20
8443870	рН	2023/01/11			101	98 - 103			0.24	N/A
8443876	Alkalinity (Total as CaCO3)	2023/01/11			97	85 - 115	<1.0	mg/L	0.70	20
8443881	Conductivity	2023/01/11			101	85 - 115	<1.0	umho/cm	0.30	25

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

		Bureau Veritas Laboratori 6740 Campobello Road, M	es Mississauga, On	itario Canada L!	5N 2L8 Tel (905) 817	-5700 Toll-free:800	-563-6266 Fax.	(905) 817-5777	www.bvlabs.com						CHAIN	OF	10-Jan-23	15:50		Page of	2
VERITAS						0500	RT TO:					PROJECT	INFORMATION	J-		T Ash	ton Gibson				-
		NVOICE TO:	4.4			REPL	RTTO:		and the second second			B47895	11	•.	and the state of the	+- 111 11 11		11.010		#:	100
Company Name		Plan Engineering Lim		The second se	pany Name:		1	Mell I		Quotation	#.					+ (307788				
Attention		Rd W Block C. Unit 2	on			< ongarat	0 /1	Matt L	ony	P.O. #:		145004	- 12/1	22	anto a a Arras	-	N 19 N 1938979				
Address:				Add	'ess:	1000			10000	Project:			1411	->	A CONTRACTOR OF	<ss< td=""><td>ENV-11</td><td>47</td><td></td><td>iger:</td><td></td></ss<>	ENV-11	47		iger:	
	Guelph ON N1K		0) 004 0000	_				-		Project Na	ame:	-		-	A STREET		Commune Contract of Management and	and an		10-11	
Tel		Fax (51				11	Fax:	Licoles		Site #	A. 199	MO	-	-	1		C#740605-01-01		Ashto	on Gibson	
Email:		@gmblueplan.ca_ in !			STREET, STREET	rK . Ongar	ato wyn	101 vepian		Sampled			00501510)	-		1		Time (TAT) D	and and		-
MOE RE	GULATED DRINKIN	G WATER OR WATER	INTENDED	FOR HUMA	N CONSUMPTIC	N MUST BE	1		ANA	LYSIS RE	QUESTEL	(PLEASE BE	SPECIFIC)	1	1	and the second se	Please provide ad	Time (TAT) Re vance notice for			
	SUBMITTED	ON THE BV LABS DRI	INKING WAI	ER CHAIN	DECUSIODY	A 2816 1	÷								1	Regular (S	tandard) TAT:			-	
Regula	ation 153 (2011)	0	ther Regulatio	ns	Special	Instructions	circle): VI										d if Rush TAT is not spe	cified):		1	X
Table 1	Res/Park Media	um/Fine CCME	Sanitary Sew	er Bylaw		1.	200									Standard TAT	= 5-7 Working days for	most tests		ų	
	Ind/Comm Coars		Storm Sewer	Bylaw	15 20 10		lea / O	0									Standard TAT for certain		DD and Dioxins	/Furans are >	5
Table 3	Agri/Other For F		funicipality		12		d) p	F									your Project Manager f				
Table		PWQO					ield Filtered (please cl Metals Hg / Cr VI	13								A	c Rush TAT (if applies		ission) e Required	-	_
MILLION OF STREET		Other		7 - 1 - 1	-		Aeta	N							1 .	Date Require	ation Number:	(100	e required.	L	
	Include Criter	ia on Certificate of Anal	ysis (Y/N)?		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Field Filtered (please Metals Hg / Cr /	1										(Ca	II lab for #)	100	
Sam	ple Barcode Label	Sample (Location) Ide		Date Samp	ed Time Sample	d Matrix										# of Bottles		Comme	nts		
		11 - 0		0-1 1	1 20	Water	differentia	. /								1					
1		WET-02		23/01/0	6 10.22	Water	in terrer i	X								5					
						11100	1	1			-					r					
2		WET-06		23/01/0	6 12:27	. Water		X								5					
		001 00		2/10/10	6 10.01						-			-		-					
3						10										1					
						_				-				-							
4							1.11						1. I								
														-					_	_	_
5																					
											ļ			-							
6							A Day I have					1									
							10 d. m							_							_
							10001120					1 1		- 1							
7						9	31.R.S.WY														_
8							inite_pri														
			~				1.30.00														
9			\bigcap																		
-			(MO)				1000000				1										
10			Y.		1		1.15														
0.	· RELINQUISHED BY:	Signature/Print)	Date: M	(/MM/DD)	Time	RECEIVED	BY: (Signature	/Print)	Date: (YY/	MM(DD)		Time	# jars used			Labora	tory Use Only				
			23/0	A start a start start as	9:30	7 1/	MAI	IN	223/0	110	IT	50	not submit	ted	Time Sensitive	Temperat	ure (°C) on Recei	Custody Se	al Y	es, N	0
			03/11	1.00		V	11-11	V / I		41	13	y y		1.17			1217	Present Intact		1	-
IN FRE OTH	EDWISE AGREED TO BU	WRITING, WORK SUBMITTED	2J/U/	NOF CUSTORY	IS SUBJECT TO PVI	ABS' STANDARD T	ERMS AND CON	DITIONS, SIGN	ING OF THIS CHAI	N OF CUST	TODY DOC	UMENT IS	100		Contraction (Contraction)		and the second	White: E	V Labs	Yellow: C	lient
ACKNOWLEDO	SMENT AND ACCEPTANC	E OF OUR TERMS WHICH AF	RE AVAILABLE	FOR VIEWING A	T WWW.BVLABS.CO	W/TERMS-AND-CON	DITIONS.					99 9 20 10 20 20 20 A	SAM	PLESA	AUST BE KERT CO	001 (< 10° C)	FROM TIME OF SAMP	to the second second	an a 2019240	10050201055-5	
IT IS THE RES	SPONSIBILITY OF THE RI	ELINQUISHER TO ENSURE TH	HE ACCURACY	OF THE CHAIN	OF CUSTODY RECOR	D. AN INCOMPLET	CHAIN OF CUS	TODY MAY RE	SULT IN ANALYTIC	AL TAT DE	ELAYS.				UNTIL DE	ELIVERY TO BY	/ LABS	1000			
** SAMPLE CO	NTAINER, PRESERVATIO	N, HOLD TIME AND PACKAG	E INFORMATIO	N CAN BE VIEV	ED AT WWW.BVLAB	S.COM/RESOURCE	S/CHAIN-OF-CUS	TODY-FORMS		_											

Bureau Veritas Canada (2019) Inc.

APPENDIX F3: LABORATORY CERTIFICATES OF ANALYSIS OFF-SITE PRIVATE WATER WELLS

Your Project #: 121123 Your C.O.C. #: n/a

Attention: Mark Ongarato

GM BluePlan Engineering Limited 650 Woodlawn Rd W Block C, Unit 2 Guelph, ON CANADA N1K 1B8

> Report Date: 2022/12/07 Report #: R7420844 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2Z3556

Received: 2022/12/01, 13:30

Sample Matrix: Water # Samples Received: 3

	Date	Date		
Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
3	N/A	2022/12/05	CAM SOP-00448	SM 23 2320 B m
3	N/A	2022/12/05	CAM SOP-00414	SM 23 2510 m
3	N/A	2022/12/05	CAM SOP-00446	SM 23 5310 B m
3	N/A	2022/12/06	CAM SOP	SM 2340 B
			00102/00408/00447	
3	N/A	2022/12/05	CAM SOP-00447	EPA 6020B m
3	N/A	2022/12/02	CAM SOP-00551	
3	N/A	2022/12/02	CAM SOP-00552	
3	N/A	2022/12/05	CAM SOP-00441	USGS I-2522-90 m
3	N/A	2022/12/06	CAM SOP-00440	SM 23 4500-NO3I/NO2B
3	2022/12/02	2022/12/05	CAM SOP-00413	SM 4500H+ B m
3	2022/12/06	2022/12/07	CAM SOP-00428	SM 23 2540D m
3	N/A	2022/12/02	CAM SOP-00417	SM 23 2130 B m
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Quantity Extracted 3 N/A 3 N/A	Quantity Extracted Analyzed 3 N/A 2022/12/05 3 N/A 2022/12/02 3 N/A 2022/12/02 3 N/A 2022/12/05 3 2022/12/02 2022/12/05 3 2022/12/02 2022/12/05 3 2022/12/05 2022/12/05 3 2022/12/06 2022/12/05	Quantity Extracted Analyzed Laboratory Method 3 N/A 2022/12/05 CAM SOP-00448 3 N/A 2022/12/05 CAM SOP-00414 3 N/A 2022/12/05 CAM SOP-00446 3 N/A 2022/12/05 CAM SOP-00446 3 N/A 2022/12/06 CAM SOP-00446 3 N/A 2022/12/05 CAM SOP-00446 3 N/A 2022/12/05 CAM SOP-00447 3 N/A 2022/12/02 CAM SOP-00551 3 N/A 2022/12/02 CAM SOP-00552 3 N/A 2022/12/05 CAM SOP-00441 3 N/A 2022/12/05 CAM SOP-00441 3 N/A 2022/12/05 CAM SOP-00440 3 2022/12/02 2022/12/05 CAM SOP-00413 3 2022/12/06 CAM SOP-00413 2022/12/07 3 2022/12/06 CAM SOP-00428 CAM SOP-00428

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Page 1 of 11

Your Project #: 121123 Your C.O.C. #: n/a

Attention: Mark Ongarato

GM BluePlan Engineering Limited 650 Woodlawn Rd W Block C, Unit 2 Guelph, ON CANADA N1K 1B8

> Report Date: 2022/12/07 Report #: R7420844 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2Z3556

Received: 2022/12/01, 13:30

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Metals analysis was performed on the sample 'as received'.

(3) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 11

RESULTS OF ANALYSES OF WATER

							1	1		1	
Bureau Veritas ID		ULU965	ULU966			ULU966			ULU967		
Sampling Date		2022/12/01	2022/12/01			2022/12/01			2022/12/01		
		10:15	10:45			10:45			11:45		
COC Number		n/a	n/a			n/a			n/a		
						4646					
	UNITS	519 MALTBY	4646 S.R.20	RDL	QC Batch	S.R.20	RDL	QC Batch	192 MALTBY	RDL	QC Batch
						Lab-Dup					
Calculated Parameters											
Hardness (CaCO3)	mg/L	330	230	1.0	8377806				330	1.0	8377806
Inorganics											
Total Ammonia-N	mg/L	<0.050	0.10	0.050	8384210				<0.050	0.050	8384210
Conductivity	umho/cm	610	430	1.0	8382034				650	1.0	8382034
Dissolved Organic Carbon	mg/L	0.78	0.52	0.40	8382348	0.49	0.40	8382348	0.58	0.40	8382348
рН	рН	7.94	8.12		8382007				8.01		8382007
Total Suspended Solids	mg/L	<10	<10	10	8385572				<10	10	8385572
Turbidity	NTU	0.3	2.4	0.1	8381773				0.3	0.1	8381773
Alkalinity (Total as CaCO3)	mg/L	280	210	1.0	8381994				270	1.0	8381994
Nitrite (N)	mg/L	0.012	0.019	0.010	8381518				0.010	0.010	8381518
Nitrate (N)	mg/L	4.58	<0.10	0.10	8381518				2.73	0.10	8381518
Nitrate + Nitrite (N)	mg/L	4.59	<0.10	0.10	8381518				2.74	0.10	8381518

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Bureau Veritas ID		ULU967		
Sampling Date		2022/12/01 11:45		
COC Number		n/a		
	UNITS	192 MALTBY Lab-Dup	RDL	QC Batch
Inorganics				
Total Suspended Solids	mg/L	<10	10	8385572
RDL = Reportable Detection L QC Batch = Quality Control Ba Lab-Dup = Laboratory Initiate	atch			

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		ULU965	ULU965	ULU966	ULU967		
Sampling Date		2022/12/01	2022/12/01	2022/12/01	2022/12/01		
		10:15	10:15	10:45	11:45		
COC Number		n/a	n/a	n/a	n/a		
	UNITS	519 MALTBY	519 MALTBY Lab-Dup	4646 S.R.20	192 MALTBY	RDL	QC Batch
Metals							
Calcium (Ca)	ug/L	88000	87000	46000	88000	200	8383419
Iron (Fe)	ug/L	<100	<100	350	<100	100	8383419
Magnesium (Mg)	ug/L	27000	26000	27000	28000	50	8383419
Manganese (Mn)	ug/L	<2.0	<2.0	8.5	<2.0	2.0	8383419
Sodium (Na)	ug/L	6000	6000	5700	10000	100	8383419
RDL = Reportable Detection L							
QC Batch = Quality Control Ba							
Lab-Dup = Laboratory Initiate	d Duplic	cate					

MICROBIOLOGY (WATER)

Bureau Veritas ID		ULU965	ULU966	ULU967	
Sampling Date		2022/12/01	2022/12/01	2022/12/01	
		10:15	10:45	11:45	
COC Number		n/a	n/a	n/a	
	UNITS	519 MALTBY	4646 S.R.20	192 MALTBY	QC Batch
Microbiological					
Fecal coliform	CFU/100mL	0	0	0	8381536
Background	CFU/100mL	19	6	79	8381530
Total Coliforms	CFU/100mL	0	0	1	8381530
Escherichia coli	CFU/100mL	0	0	0	8381530
QC Batch = Quality Control B	atch				<u> </u>

TEST SUMMARY

Bureau Veritas ID:	ULU965	Collected:	2022/12/01
Sample ID:	519 MALTBY	Shipped:	
Matrix:	Water		2022/12/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8381994	N/A	2022/12/05	Kien Tran
Conductivity	AT	8382034	N/A	2022/12/05	Kien Tran
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8382348	N/A	2022/12/05	Gyulshen Idriz
Hardness (calculated as CaCO3)		8377806	N/A	2022/12/06	Automated Statchk
Metals Analysis by ICPMS (as received)	ICP/MS	8383419	N/A	2022/12/05	Prempal Bhatti
Total Coliforms/ E. coli, CFU/100mL	PL	8381530	N/A	2022/12/02	Sirimathie Aluthwala
Fecal coliform, (CFU/100mL)	PL	8381536	N/A	2022/12/02	Rayane Gama Santos
Total Ammonia-N	LACH/NH4	8384210	N/A	2022/12/05	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	8381518	N/A	2022/12/06	Chandra Nandlal
рН	AT	8382007	2022/12/02	2022/12/05	Kien Tran
Total Suspended Solids	BAL	8385572	2022/12/06	2022/12/07	Masood Siddiqui
Turbidity	AT	8381773	N/A	2022/12/02	Surinder Rai

Bureau Veritas ID: ULU965 Dup Sample ID: 519 MALTBY Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Analysis by ICPMS (as received)	ICP/MS	8383419	N/A	2022/12/05	Prempal Bhatti

Bureau Veritas ID:ULU966Sample ID:4646 S.R.20Matrix:Water

Collected: 2022/12/01 Shipped: Received: 2022/12/01

Collected: 2022/12/01

Received: 2022/12/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8381994	N/A	2022/12/05	Kien Tran
Conductivity	AT	8382034	N/A	2022/12/05	Kien Tran
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8382348	N/A	2022/12/05	Gyulshen Idriz
Hardness (calculated as CaCO3)		8377806	N/A	2022/12/06	Automated Statchk
Metals Analysis by ICPMS (as received)	ICP/MS	8383419	N/A	2022/12/05	Prempal Bhatti
Total Coliforms/ E. coli, CFU/100mL	PL	8381530	N/A	2022/12/02	Sirimathie Aluthwala
Fecal coliform, (CFU/100mL)	PL	8381536	N/A	2022/12/02	Rayane Gama Santos
Total Ammonia-N	LACH/NH4	8384210	N/A	2022/12/05	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	8381518	N/A	2022/12/06	Chandra Nandlal
рН	AT	8382007	2022/12/02	2022/12/05	Kien Tran
Total Suspended Solids	BAL	8385572	2022/12/06	2022/12/07	Masood Siddiqui
Turbidity	AT	8381773	N/A	2022/12/02	Surinder Rai

Bureau Veritas ID: Sample ID: Matrix:						Collected: 2022/12/01 Shipped: Received: 2022/12/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Organic Carbor	(DOC)	TOCV/NDIR	8382348	N/A	2022/12/05	Gyulshen Idriz

Page 6 of 11

TEST SUMMARY

Bureau Veritas ID:		Collected:	2022/12/01
Sample ID: Matrix:	192 MALTBY Water	Shipped: Received:	2022/12/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8381994	N/A	2022/12/05	Kien Tran
Conductivity	AT	8382034	N/A	2022/12/05	Kien Tran
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8382348	N/A	2022/12/05	Gyulshen Idriz
Hardness (calculated as CaCO3)		8377806	N/A	2022/12/06	Automated Statchk
Metals Analysis by ICPMS (as received)	ICP/MS	8383419	N/A	2022/12/05	Prempal Bhatti
Total Coliforms/ E. coli, CFU/100mL	PL	8381530	N/A	2022/12/02	Sirimathie Aluthwala
Fecal coliform, (CFU/100mL)	PL	8381536	N/A	2022/12/02	Rayane Gama Santos
Total Ammonia-N	LACH/NH4	8384210	N/A	2022/12/05	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	8381518	N/A	2022/12/06	Chandra Nandlal
рН	AT	8382007	2022/12/02	2022/12/05	Kien Tran
Total Suspended Solids	BAL	8385572	2022/12/06	2022/12/07	Masood Siddiqui
Turbidity	AT	8381773	N/A	2022/12/02	Surinder Rai

Bureau Veritas ID: Sample ID: Matrix:	ULU967 Dup 192 MALTBY Water					Shipped:	2022/12/01 2022/12/01	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Total Suspended Solids		BAL	8385572	2022/12/06	2022/12/07	Masood S	iddiqui	

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

GM BluePlan Engineering Limited Client Project #: 121123 Sampler Initials: MO

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8381518	Nitrate (N)	2022/12/06	100	80 - 120	101	80 - 120	<0.10	mg/L	NC	20		
8381518	Nitrite (N)	2022/12/06	112	80 - 120	109	80 - 120	<0.010	mg/L	NC	20		
8381773	Turbidity	2022/12/02			116 (1)	85 - 115	<0.1	NTU	2.3	20		
8381994	Alkalinity (Total as CaCO3)	2022/12/05			98	85 - 115	<1.0	mg/L	3.5	20		
8382007	рН	2022/12/05			102	98 - 103			0.35	N/A		
8382034	Conductivity	2022/12/05			99	85 - 115	<1.0	umho/c m	0	25		
8382348	Dissolved Organic Carbon	2022/12/05	96	80 - 120	96	80 - 120	<0.40	mg/L	5.2	20		
8383419	Calcium (Ca)	2022/12/05	NC	80 - 120	105	80 - 120	<200	ug/L	1.5	20		
8383419	Iron (Fe)	2022/12/05	104	80 - 120	104	80 - 120	<100	ug/L	NC	20		
8383419	Magnesium (Mg)	2022/12/05	NC	80 - 120	101	80 - 120	<50	ug/L	1.7	20		
8383419	Manganese (Mn)	2022/12/05	101	80 - 120	99	80 - 120	<2.0	ug/L	NC	20		
8383419	Sodium (Na)	2022/12/05	102	80 - 120	102	80 - 120	<100	ug/L	0.75	20		
8384210	Total Ammonia-N	2022/12/05	103	75 - 125	105	80 - 120	<0.050	mg/L	NC	20		
8385572	Total Suspended Solids	2022/12/07					<10	mg/L	NC	20	96	85 - 115

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Rayane Gama Santos, Lab Technician

Sirimathie Aluthwala, Team Lead

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

VERITAS	Tel: 905-817-5	700 Fax: 905	ER CHAIN Mississauga, Onta 817-5779 Toll F	ree: 1-800	-563-6266					X Not regu	lated (how	vever wa	ter is	for h	uma	n cons	ump	tion)			
ivoice To:					Repor	t To:															
Impany Name: GM Bluepla- tention: Kim Wilkinson Idress: GSO Waallaum Rd 1 Idress: GSO Waallaum Rd 1	Engin	eeing			Same	as Invoi	ce To					š			AN	ALY	SIS F	REQL	JEST	ED	
ention: Kim Wilkinson		0			Compar	y Name:	Giv	n Bivef	lan		0	i se		15	1.1.1		~4	20			
dress: 650 Wood lawn Rd 1	W, Guely	ph, Block	cc, Unit2		Attentio	in: N	lark	n Bivef 2 Ongo	irato)		Total colifor	P	Hd	X			(and	P		
1: 519 824 8150 Project: 1	21123				Address			Ŭ				Lo la	Loui	1	1		2	3	140	3	Ŧ
x: P.O.#:					Tel:				Fax:			ta	ckg	3	ŧ		n gr	Cel	5	E.p.o	S F
mail: info egm blueplan	.CA	. (A								nblopplan	. 66	5	УВа	1	ł		5 Ho	m		Turbidity	dui
*DRINKING WATER TYPE LE	GEND: [R=	Raw Water] [T=Treated	/POE]	[D=Distr	ibution]	[P=P	lumbing]	[S=Star	nding] [F=Flu	ished]		Ecoli /Background	ŧ	Ŧ	rite	ane	So	ſ		Conductivity
Sample Identification/Location	Date Sampled	Time Sampled	*Water Type BIT, D, P, S, F)	Notifie	H Adverse cation iired?	Field Chlori	ne	Field Turbidity	Field pH	Watertrax SPL#	Resample Y/00	# of Bottles	Coliform (E	eretropt	Schedule 23 + Schedule 24 PNW	Nitrate /Nitrite	Frithalomethanes Hardaris	tread Mehels (Sodium calcium M	Ammerica	and	(Kehren)
				YES	NO	Free 1	_						Co	E	E	Nitr	ŧ	P.	Z.	155	00
519 Maltby	2022/12/01	10:15	Raw		×							7	X	×		×	×	x	×		××
4646 5.2.20	(t e. n	10:45	Raw		×							ナナナ	×	×	×		×	×	×	×	××
519 Maltby 4646 S.R.20 192 Maltby	~ • •1	11:45	Raw		X							7	X	×	X	X	X	X	×	×	××
					_			01-De	c-22 1	3:30											
								ton Gibs					1	EC	0	-					
								22Z35		811	[LC	U	IN I	NA	TER	LO	0	
								-4433	30												
							WP		V-121												
It is mandatory	that all r	otificatio							analy	sis for regu	lated d	rinkin	gwa	ater	sub	mis	sion	is.			
TAT (TURNAROUND TIME)			ADV	ERSE N	OTIFIC	ATION II	NFOR	MATION				124.867		LA	BOR	ATO	RY U	ISE C	ONLY		
JSH TAT MUST HAVE PRIOR APPROVAL	Waterworks	Name:				N	Nedical	Officer of	Health/P	ublic Health Ur	nit	Receiver	d By (P	rint							
7	Waterworks	Number:				N	lame/R	Region:				Received	d By (S	ign):					10		NO.E
Regular (5-15 Working Days)	Address:					C	ontact					Date: 2	on	113	293	۲		Time:	13	3.3	D
RUSH (Specify Below)	Contact:					A	ddress	51				Comme	nts:	C	nc	1		sea	l	101	NTI
te Due: Dec 6,2022	Tel:		Fax:			Т	el							1025		U	1	1.11			10
SH #	Cell :			_		F	ax #										10	-	2.5		100
	Email :	e				A	fter ho		_			Receivi	ng Te			613		10.00			
npled By (Print): Mark Ongarat		Sampled By (S	- 11 ⁻¹¹ -11		_		[Date:			Time:			Coo	ling f	viedia	Prese	en (Y)	N?		Y
elinquished By (Print): Mark Organ	ato	Relinquished E	ly (Sign)				1	Date:			Time:			Met	als P	reserv	ation	Chec	k Y/N	?	N

Your Project #: 121123 Your C.O.C. #: NA

Attention: Abdi Faarah

GM BluePlan Engineering Limited 650 Woodlawn Rd W Block C, Unit 2 Guelph, ON CANADA N1K 1B8

> Report Date: 2022/12/09 Report #: R7424206 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2Z6673

Received: 2022/12/05, 11:47

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	2	N/A	2022/12/07	CAM SOP-00448	SM 23 2320 B m
Conductivity	2	N/A	2022/12/07	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2022/12/07	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	2	N/A	2022/12/07	CAM SOP	SM 2340 B
				00102/00408/00447	
Metals Analysis by ICPMS (as received) (2)	2	N/A	2022/12/07	CAM SOP-00447	EPA 6020B m
Total Coliforms/ E. coli, CFU/100mL	2	N/A	2022/12/05	CAM SOP-00551	
Fecal coliform, (CFU/100mL)	2	N/A	2022/12/05	CAM SOP-00552	
Total Ammonia-N	2	N/A	2022/12/09	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (3)	2	N/A	2022/12/07	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2022/12/06	2022/12/07	CAM SOP-00413	SM 4500H+ B m
Total Suspended Solids	2	2022/12/08	2022/12/09	CAM SOP-00428	SM 23 2540D m
Turbidity	2	N/A	2022/12/06	CAM SOP-00417	SM 23 2130 B m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Page 1 of 10

Your Project #: 121123 Your C.O.C. #: NA

Attention: Abdi Faarah

GM BluePlan Engineering Limited 650 Woodlawn Rd W Block C, Unit 2 Guelph, ON CANADA N1K 1B8

> Report Date: 2022/12/09 Report #: R7424206 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2Z6673

Received: 2022/12/05, 11:47

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Metals analysis was performed on the sample 'as received'.

(3) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 10

RESULTS OF ANALYSES OF WATER

	UMN410	UMN411			UMN411		
	2022/12/05 09:30	2022/12/05 10:25			2022/12/05 10:25		
	NA	NA			NA		
UNITS	110 MALTBY	104 MALTBY	RDL	QC Batch	104 MALTBY Lab-Dup	RDL	QC Batch
mg/L	250	350	1.0	8385129			
mg/L	0.20	<0.050	0.050	8387302			
umho/cm	480	840	1.0	8386788			
mg/L	0.79	0.81	0.40	8385777			
рН	8.13	8.00		8386779			
mg/L	<10	<10	10	8390785	<10	10	8390785
NTU	2.1	<0.1	0.1	8386723	<0.1	0.1	8386723
mg/L	230	300	1.0	8386755			
mg/L	<0.010	<0.010	0.010	8386816			
mg/L	<0.10	5.90	0.10	8386816			
mg/L	<0.10	5.90	0.10	8386816			
itch							
	mg/L umho/cm mg/L pH mg/L NTU mg/L mg/L mg/L imit ttch	Drawner 2022/12/05 09:30 NA NA UNITS 110 MALTBY mg/L 250 mg/L 0.20 umho/cm 480 mg/L 0.79 pH 8.13 mg/L <10	Draw in Draw in 2022/12/05 2022/12/05 09:30 10:25 NA NA UNITS 110 MALTBY 104 MALTBY mg/L 250 350 mg/L 250 350 umho/cm 480 840 mg/L 0.20 <0.050	Drawner Drawner 2022/12/05 09:30 2022/12/05 10:25 NA NA NA NA UNITS 110 MALTBY 104 MALTBY mg/L 250 350 1.0 mg/L 250 350 1.0 mg/L 0.20 <0.050	2022/12/05 09:30 2022/12/05 10:25 Image: Construct of the system of the	Only of the second se	2000/12/05 2022/12/05 2022/12/05 2022/12/05 2022/12/05 10:25 2022/12/05 10:25 2022/12/05 10:25 10:25 10:25

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

Bureau Veritas ID		UMN410	UMN411							
Sampling Date		2022/12/05	2022/12/05							
Sampling Date		09:30	10:25							
COC Number		NA	NA							
	UNITS	110 MALTBY	104 MALTBY	RDL	QC Batch					
Metals										
Calcium (Ca)	ug/L	56000	94000	200	8387300					
Iron (Fe)	ug/L	260	<100	100	8387300					
Magnesium (Mg)	ug/L	28000	27000	50	8387300					
Manganese (Mn)	ug/L	29	<2.0	2.0	8387300					
Sodium (Na)	ug/L	7200	41000	100	8387300					
RDL = Reportable Detection I	imit									
QC Batch = Quality Control Batch										

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

MICROBIOLOGY (WATER)

Bureau Veritas ID		UMN410	UMN411	
Sampling Date		2022/12/05	2022/12/05	
		09:30	10:25	
COC Number		NA	NA	
	UNITS	110 MALTBY	104 MALTBY	QC Batch
Microbiological				
Fecal coliform	CFU/100mL	0	0	8385993
Background	CFU/100mL	0	0	8385989
Total Coliforms	CFU/100mL	0	0	8385989
Escherichia coli	CFU/100mL	0	0	8385989
QC Batch = Quality Control Ba	atch			

GM BluePlan Engineering Limited Client Project #: 121123 Sampler Initials: AF

TEST SUMMARY

Bureau Veritas ID:			2022/12/05
Sample ID: Matrix:	110 MALTBY Water	Shipped: Received:	2022/12/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8386755	N/A	2022/12/07	Kien Tran
Conductivity	AT	8386788	N/A	2022/12/07	Kien Tran
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8385777	N/A	2022/12/07	Gyulshen Idriz
Hardness (calculated as CaCO3)		8385129	N/A	2022/12/07	Automated Statchk
Metals Analysis by ICPMS (as received)	ICP/MS	8387300	N/A	2022/12/07	Arefa Dabhad
Total Coliforms/ E. coli, CFU/100mL	PL	8385989	N/A	2022/12/05	Sonja Elavinamannil
Fecal coliform, (CFU/100mL)	PL	8385993	N/A	2022/12/05	Sonja Elavinamannil
Total Ammonia-N	LACH/NH4	8387302	N/A	2022/12/09	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	8386816	N/A	2022/12/07	Chandra Nandlal
рН	AT	8386779	2022/12/06	2022/12/07	Kien Tran
Total Suspended Solids	BAL	8390785	2022/12/08	2022/12/09	Darshan Patel
Turbidity	AT	8386723	N/A	2022/12/06	Gurparteek KAUR

Bureau Veritas ID: UMN411 Sample ID: 104 MALTBY Matrix: Water

Collected: 2022/12/05 Shipped: Received: 2022/12/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8386755	N/A	2022/12/07	Kien Tran
Conductivity	AT	8386788	N/A	2022/12/07	Kien Tran
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8385777	N/A	2022/12/07	Gyulshen Idriz
Hardness (calculated as CaCO3)		8385129	N/A	2022/12/07	Automated Statchk
Metals Analysis by ICPMS (as received)	ICP/MS	8387300	N/A	2022/12/07	Arefa Dabhad
Total Coliforms/ E. coli, CFU/100mL	PL	8385989	N/A	2022/12/05	Sonja Elavinamannil
Fecal coliform, (CFU/100mL)	PL	8385993	N/A	2022/12/05	Sonja Elavinamannil
Total Ammonia-N	LACH/NH4	8387302	N/A	2022/12/09	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	8386816	N/A	2022/12/07	Chandra Nandlal
рН	AT	8386779	2022/12/06	2022/12/07	Kien Tran
Total Suspended Solids	BAL	8390785	2022/12/08	2022/12/09	Darshan Patel
Turbidity	AT	8386723	N/A	2022/12/06	Gurparteek KAUR

Bureau Veritas ID: Sample ID: Matrix:	104 MALTBY					Collected: 2022/12/05 Shipped: Received: 2022/12/05
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Suspended Solids		BAL	8390785	2022/12/08	2022/12/09	Darshan Patel
Turbidity		AT	8386723	N/A	2022/12/06	Gurparteek KAUR

Page 6 of 10 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GM BluePlan Engineering Limited Client Project #: 121123 Sampler Initials: AF

GENERAL COMMENTS

Results relate only to the items tested.

Page 7 of 10 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

GM BluePlan Engineering Limited Client Project #: 121123 Sampler Initials: AF

			Matrix	Spike	e SPIKED BLANK Method Blank RPD		D	QC Sta	andard			
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8385777	Dissolved Organic Carbon	2022/12/06	94	80 - 120	94	80 - 120	<0.40	mg/L	1.7	20		
8386723	Turbidity	2022/12/06			115	85 - 115	<0.1 NTU		NC	20		
8386755	Alkalinity (Total as CaCO3)	2022/12/07			96	85 - 115	<1.0	mg/L	1.5	20		
8386779	рН	2022/12/07			102	98 - 103			0.41	N/A		
8386788	Conductivity	2022/12/07			101	85 - 115	<1.0	umho/c m	0	25		
8386816	Nitrate (N)	2022/12/07	95	80 - 120	96	80 - 120	<0.10	mg/L	0.21	20		
8386816	Nitrite (N)	2022/12/07	104	80 - 120	112	80 - 120	<0.010	mg/L	0.42	20		
8387300	Calcium (Ca)	2022/12/07	NC	80 - 120	103	80 - 120	<200	ug/L				
8387300	Iron (Fe)	2022/12/07	103	80 - 120	103	80 - 120	<100	ug/L				
8387300	Magnesium (Mg)	2022/12/07	NC	80 - 120	102	80 - 120	<50	ug/L				
8387300	Manganese (Mn)	2022/12/07	100	80 - 120	99	80 - 120	<2.0	ug/L				
8387300	Sodium (Na)	2022/12/07	NC	80 - 120	98	80 - 120	<100	ug/L	0.42	20		
8387302	Total Ammonia-N	2022/12/09	95	75 - 125	95	80 - 120	<0.050	mg/L	NC	20		
8390785	Total Suspended Solids	2022/12/09					<10	mg/L	NC	20	95	85 - 115

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

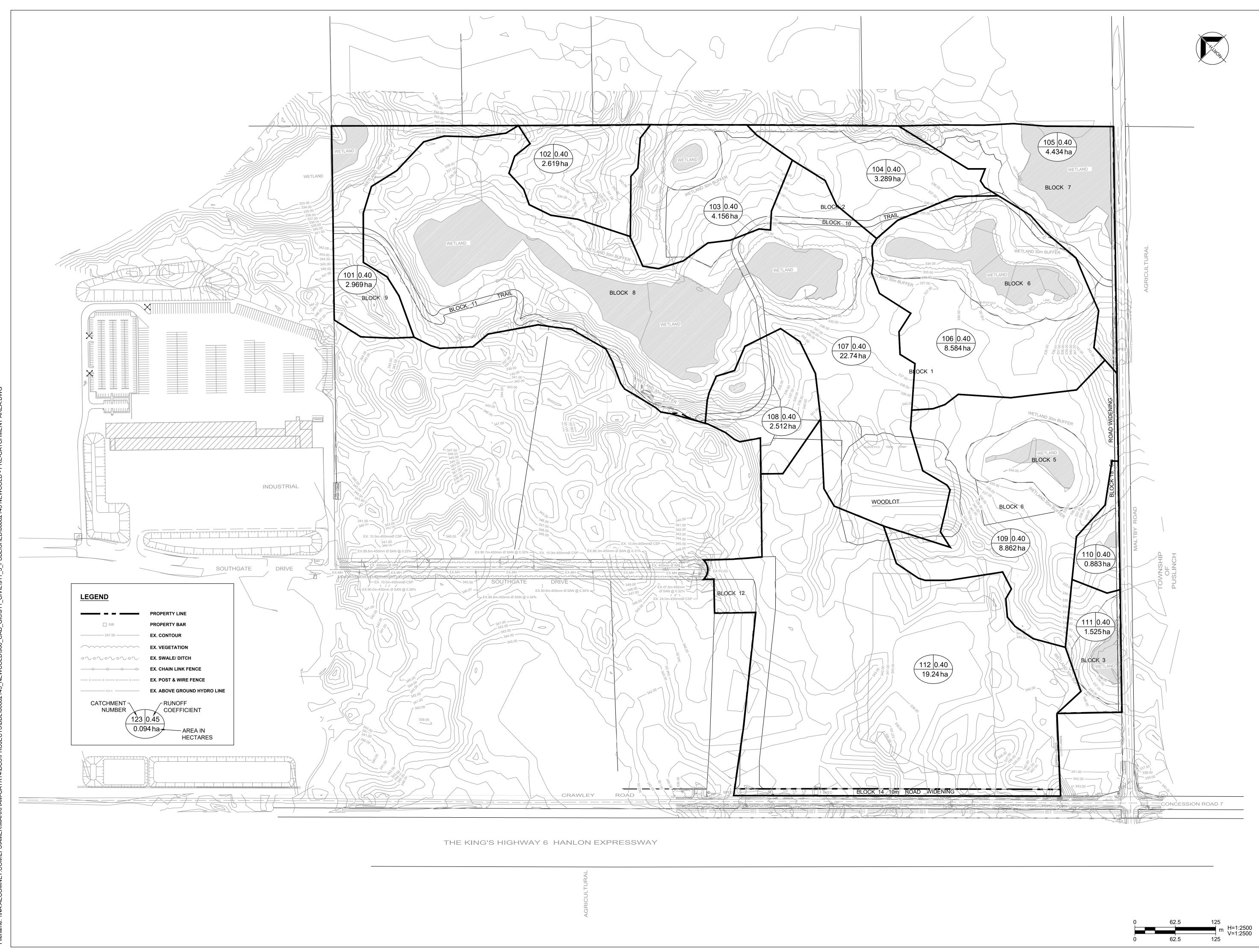
Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GM BluePlan Engineering Limited Client Project #: 121123 Sampler Initials: AF

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

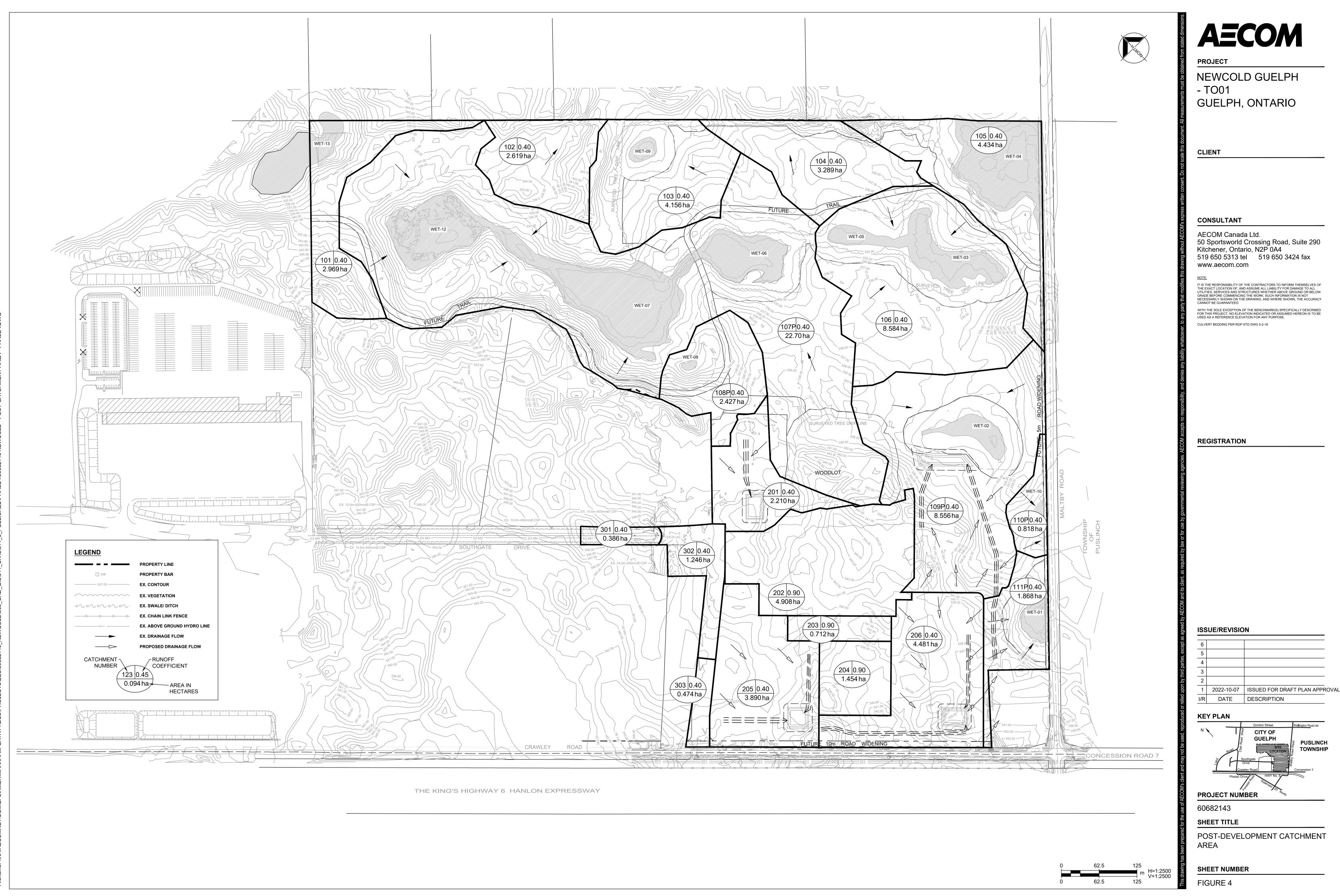


Sonja Elavinamannil, Master of Biochemistry, Team Lead

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Asinton Gibson		sbello Rd,	ER CHAIN Mississauga, Ont -817-5779 Toll F	ario L5N 2	L8 www.			UKD		indicate white 170 Not regu		318/31	9		24	3	C	17				
nvoi MUM ENV-868					Repor	t To:		4					cf.	eca	100	1.600	ms				-	
ompany Name: GM Blue Aan	Engineeri	1) Ltd.			Same	as Invo	oice Te	•					T		AN	ALYS	SIS R	EQU	JEST	ED		
ttention: Kim W.	5	2			Compar	y Name	2:						eal	I	the		-9	100				
ddress:					Attentio	in: f	lbdi	Faarah	; Mat	t Long; 1	Mark D.	ngarh	/Background/	. 0	-He-		E.	50		5		1
el: Project: [2	103			Address:												ila						
ax: P.O.#:				L.,	Tel: Fax:											S						
mail: info@gmblueplan, co				d	Email:	abdi	i, foo	wahes "	abluer	lan.ca			/Bč	8	ji ji		\$	pos	-	ter		5
*DRINKING WATER TYPE LE	GEND: [R=	Raw Water] [T=Treated	/POE]	[D=Distr	ibutio	n] [P=	Plumbing]	[S=Sta	nding] [F=Flu	ushed]		Ecoli	T	A	rite	199	5	5	S		1
Sample Identification/Location	Date Sampled	Time Sampled	*Water Type (R,T,D,P,S,F)	Notifi	H Adverse ication sired?		eld prine	Field Turbidity	Field pH	Watertrax SPL#	Resample Y/N?	# of Bottles	Çoliform / E	desterm		Nitrate /Nitrite	hallowet	B Metuls	manni	tel Sus	rbidit	1 Kal
				YES	NO	Free	Total				10.16.		3	1	R	iz,	覃	g	Æ	1-91	7	d T
110 Maltby	2122/12/05		R		X							7	1	Y	1	V/	V	8	V	V		1
104 Maltby	2022/12/05	10:25	R		X							7	V	ľ	1	V	V	V	~	1	1	/
/	L												_								_	
													<u> </u>			IT	C		24			
															V	1	L	- 1	11		-	
	-					1							-		_						-	
						1													_		-	
		l	_			1						-			RE	C'D) IN	(W	AT	RL	00	-
						1																
																Ļ						_
*It is mandator	y that all n	notificatio				_				sis for reg	ulated d	rinkin	gw									
TAT (TURNAROUND TIME)			ADV	ERSE N	OTIFIC	ATION	INFO	RMATION						LA	BOR	ATO	RYL	JSE C	DNL	(
RUSH TAT MUST HAVE PRIOR APPROVAL	Waterworks			_					Health/P	ublic Health U	nit	Receive		-								
	Waterworks	Number:						/Region:				Receive		ting damage	10.71			-	1	1.0	17	
Regular (5-15 Working Days)	Address:					-	Conta	2.001				Date: 2022/12/15 Time: 11.47										
RUSH (Specify Below)	Contact: Tel:		Fax:			-	Addre Tel	SS:				Comme	nts:	N	ner	al	10	N-	t c	E		
Date Due: RUSH #	Cell :		FdX.				Fax #							14	000	s.			-	~		
INVITE:	Email :							hours #:				Receivi	ing Te	mp:	10	Int	10	· ~				
Sampled By (Print): Abdi Faarah	Lannan :	Sampled By (S	iign):			1	Pateri	Date: 12	105/2	022	Time:	:46	1.0011	7		Media			IN?		Y	
Relinguished By (Print): ALJ: La		Relinguished			_			Date: (2	1	12122		1:45		-		resen		-		12	N	1

APPENDIX G: CATCHMENT AREA PLANS



022-10-04 НАМ-САТ à⊿

ast ____

AECOM
PROJECT
NEWCOLD GUELPH
- TO01
GUELPH, ONTARIO
CLIENT
CONSULTANT
AECOM Canada Ltd.
50 Sportsworld Crossing Road, Suite 290 Kitchener, Ontario, N2P 0A4 519 650 5313 tel 519 650 3424 fax www.aecom.com
NOTE: IT IS THE RESPONSIBILITY OF THE CONTRACTORS TO INFORM THEMSELVES OF
THE EXACT LOCATION OF, AND ASSUME ALL LIABILITY FOR DAMAGE TO ALL UTILITIES, SERVICES AND STRUCTURES WHETHER ABOVE GROUND OR BELOW GRADE BEFORE COMMENCING THE WORK. SUCH INFORMATION IS NOT NECESSARILY SHOWN ON THE DRAWING, AND WHERE SHOWN, THE ACCURACY CANNOT BE GUARANTEED.
WITH THE SOLE EXCEPTION OF THE BENCHMARK(S) SPECIFICALLY DESCRIBED FOR THIS PROJECT, NO ELEVATION INDICATED OR ASSUMED HEREON IS TO BE USED AS A REFERENCE ELEVATION FOR ANY PURPOSE.
CULVERT BEDDING PER ROP STD DWG 5-2-18
REGISTRATION
ISSUE/REVISION
6
5 4
3 2
12022-10-07ISSUED FOR DRAFT PLAN APPI/RDATEDESCRIPTION
KEY PLAN Gordon Street Wellington Road 46
BORN Southgate
Crawley Road Concession 7
Sideroad ZO
PROJECT NUMBER ************************************
SHEET TITLE
PRE-DEVELOPMENT CATCHMENT
AREA
SHEET NUMBER

C102

123-02-15 י^ויברבעדן ₹ 12) \leq Ş₫

APPENDIX H1: WATER BALANCE CALCULATIONS – PRE-DEVELOPMENT

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	111 (WET-01) - Upland Area	Soil Type:	Sand
		Vegetation:	Shallow-Rooted
Contributing Area =	1.11 ha	Root Zone Depth $(m) =$	0.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	50
Weather Station :	Fergus Shand Dam		50

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0		0.0	0.0	0.0	0.0	11.6	0.4	12.0	4.8	53	80
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		242.4	0.0		0.0	0.0	0.0	0.0	5.8	0.2	6.0	2.4	27	40
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0		0.0	0.0	0.0	0.0	2.8	0.2	3.0	1.2	13	20
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	30.2	30.2	0.0	0.0	43.9	23.4	25.2	48.6	19.5	216	325
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		50.0	0.0	76.2	76.2	0.0	0.0	10.7	17.1	113.4	130.5	52.2	581	871
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	27.6	-22.4	106.2	106.2	0.0	6.0	0.0	8.5	56.7	65.2	26.1	290	435
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	11.0	-16.6	105.8	105.8	0.0	26.8	0.0	4.3	28.4	32.6	13.0	145	218
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	7.0	-4.0	100.6	100.6	0.0	14.6	0.0	2.1	14.2	16.3	6.5	73	109
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		22.1	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.2	3.3	36	54
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	27.9	37.1	37.1	0.0	0.0	12.3	6.7	3.5	10.2	4.1	45	68
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		50.0	0.0	7.2	7.2	0.0	0.0	85.8	46.2	1.8	48.0	19.2	214	320
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		118.6	0.0		0.0	0.0	0.0	0.0	23.1	0.9	24.0	9.6	107	160
Total		35.1				945.9	357.2				541.3	541.3	0.0	47.4	152.6	152.6	252.0	404.6	161.8	1,801	2,701

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.6 Runoff Factor (Corrected for Imperviousness) = 0.40
- Evapotranspiration Factor for Impervious Surfaces = 0.34

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	111 (WET-01) - Forest/Wooded Area	Soil Type:	Sand
		Vegetation:	Mature Forest
Contributing Area =	0.13 ha	Root Zone Depth (m) =	2.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	250
Weather Station :	Fergus Shand Dam		250

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		386.5	0.0		0.0	0.0	0.0	0.0	8.1	0.4	8.6	2.6	3	8
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		442.4	0.0		0.0	0.0	0.0	0.0	4.1	0.2	4.3	1.3	2	4
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		502.0	0.0		0.0	0.0	0.0	0.0	2.0	0.2	2.2	0.7	1	2
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		250.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	14.4	19	45
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		250.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	39.1	52	122
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	223.6	-26.4	110.2	110.2	0.0	2.0	0.0	8.4	56.7	65.1	19.5	26	61
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	187.2	-36.4	125.6	125.6	0.0	7.0	0.0	4.2	28.4	32.6	9.8	13	30
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	173.6	-13.6	110.2	110.2	0.0	5.0	0.0	2.1	14.2	16.3	4.9	7	15
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		188.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	2.4	3	8
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		228.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.2	2	4
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		250.0	21.2	7.2	7.2	0.0	0.0	64.7	32.6	1.8	34.4	10.3	14	32
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		318.6	0.0		0.0	0.0	0.0	0.0	16.3	0.9	17.2	5.2	7	16
Total		35.1				945.9	357.2				574.7	574.7	0.0	14.0	119.2	119.2	252.0	371.2	111.3	149	348

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

Pervious Area Infiltration Factor (MECP Table 3.1) =	0.7
Runoff Factor (Corrected for Imperviousness) =	0.30

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	109 (WET-02) - Upland Area	Soil Type:	Sand
		Vegetation:	Shallow-Rooted
Contributing Area =	7.84 ha	Root Zone Depth $(m) =$	0.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	50
Weather Station :	Fergus Shand Dam		50

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0		0.0	0.0	0.0	0.0	11.6	0.4	12.0	4.8	377	565
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		242.4	0.0		0.0	0.0	0.0	0.0	5.8	0.2	6.0	2.4	188	282
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0		0.0	0.0	0.0	0.0	2.8	0.2	3.0	1.2	94	141
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	30.2	30.2	0.0	0.0	43.9	23.4	25.2	48.6	19.5	1,526	2,289
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		50.0	0.0	76.2	76.2	0.0	0.0	10.7	17.1	113.4	130.5	52.2	4,094	6,140
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	27.6	-22.4	106.2	106.2	0.0	6.0	0.0	8.5	56.7	65.2	26.1	2,047	3,070
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	11.0	-16.6	105.8	105.8	0.0	26.8	0.0	4.3	28.4	32.6	13.0	1,023	1,535
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	7.0	-4.0	100.6	100.6	0.0	14.6	0.0	2.1	14.2	16.3	6.5	512	768
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		22.1	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.2	3.3	256	384
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	27.9	37.1	37.1	0.0	0.0	12.3	6.7	3.5	10.2	4.1	320	480
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		50.0	0.0	7.2	7.2	0.0	0.0	85.8	46.2	1.8	48.0	19.2	1,506	2,259
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		118.6	0.0		0.0	0.0	0.0	0.0	23.1	0.9	24.0	9.6	753	1,130
Total		35.1				945.9	357.2				541.3	541.3	0.0	47.4	152.6	152.6	252.0	404.6	161.8	12,695	19,043

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.6 Runoff Factor (Corrected for Imperviousness) = 0.40
- Evapotranspiration Factor for Impervious Surfaces = 0.34

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	109 (WET-02) - Forest/Wooded Area	Soil Type:	Fine Sandy Loam
		Vegetation:	Mature Forest
Contributing Area =	0.63 ha	Root Zone Depth $(m) =$	2.00
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	300
Weather Station :	Fergus Shand Dam		500

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		436.5	0.0		0.0	0.0	0.0	0.0	7.9	0.4	8.3	2.5	16	37
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		492.4	0.0		0.0	0.0	0.0	0.0	3.9	0.2	4.2	1.2	8	18
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		552.0	0.0		0.0	0.0	0.0	0.0	2.0	0.2	2.2	0.7	4	10
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		300.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	14.4	91	213
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		300.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	39.1	246	575
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	272.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	19.5	123	288
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	236.0	-36.6	125.8	125.8	0.0	6.8	0.0	4.2	28.4	32.6	9.8	62	144
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	221.5	-14.5	111.1	111.1	0.0	4.1	0.0	2.1	14.2	16.3	4.9	31	72
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		236.6	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	2.4	15	36
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		276.8	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.2	8	18
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		300.0	23.3	7.2	7.2	0.0	0.0	62.6	31.5	1.8	33.3	10.0	63	147
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		368.6	0.0		0.0	0.0	0.0	0.0	15.8	0.9	16.7	5.0	32	74
Total		35.1				945.9	357.2				576.8	576.8	0.0	11.9	117.1	117.1	252.0	369.1	110.7	699	1,630

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.7 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.32

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	106 (WET-03/-05) - Upland Area	Soil Type:	Silt Loam
		Vegetation:	Shallow-Rooted
Contributing Area =	6.90 ha	Root Zone Depth $(m) =$	0.62
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	125
Weather Station :	Fergus Shand Dam		125

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		261.5	0.0		0.0	0.0	0.0	0.0	9.5	0.4	10.0	5.0	344	344
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		317.4	0.0		0.0	0.0	0.0	0.0	4.8	0.2	5.0	2.5	172	172
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		377.0	0.0		0.0	0.0	0.0	0.0	2.4	0.2	2.6	1.3	90	90
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		125.0	0.0	30.2	30.2	0.0	0.0	43.9	23.1	25.2	48.3	24.2	1,666	1,666
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		125.0	0.0	76.2	76.2	0.0	0.0	10.7	16.9	113.4	130.3	65.2	4,493	4,493
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	99.0	-26.0	109.8	109.8	0.0	2.4	0.0	8.5	56.7	65.2	32.6	2,246	2,246
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	69.2	-29.8	119.0	119.0	0.0	13.6	0.0	4.2	28.4	32.6	16.3	1,123	1,123
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	59.6	-9.6	106.2	106.2	0.0	9.0	0.0	2.1	14.2	16.3	8.1	562	562
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		74.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	4.1	281	281
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		114.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.0	140	140
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		125.0	10.2	7.2	7.2	0.0	0.0	75.7	38.1	1.8	39.9	19.9	1,374	1,374
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		193.6	0.0		0.0	0.0	0.0	0.0	19.0	0.9	19.9	10.0	687	687
Total		35.1				945.9	357.2				563.7	563.7	0.0	25.0	130.2	130.2	252.0	382.2	191.1	13,177	13,177

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

Pervious Area Infiltration Factor (MECP Table 3.1) =	0.5
Runoff Factor (Corrected for Imperviousness) =	0.50

Evapotranspiration Factor for Impervious Surfaces =	0.32
	0.52

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	106 (WET-03/-05) - Forest/Wooded Area	Soil Type:	Sand
		Vegetation:	Mature Forest
Contributing Area =	0.48 ha	Root Zone Depth (m) =	2.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	250
Weather Station :	Fergus Shand Dam		250

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		386.5	0.0		0.0	0.0	0.0	0.0	8.1	0.4	8.6	1.7	8	33
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		442.4	0.0		0.0	0.0	0.0	0.0	4.1	0.2	4.3	0.9	4	17
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		502.0	0.0		0.0	0.0	0.0	0.0	2.0	0.2	2.2	0.4	2	9
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		250.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	9.6	47	186
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		250.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	26.0	126	503
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	222.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	13.0	63	252
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	187.2	-35.4	124.6	124.6	0.0	8.0	0.0	4.2	28.4	32.6	6.5	31	126
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	173.6	-13.6	110.2	110.2	0.0	5.0	0.0	2.1	14.2	16.3	3.3	16	63
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		188.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	1.6	8	31
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		228.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	0.8	4	16
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		250.0	21.2	7.2	7.2	0.0	0.0	64.7	32.6	1.8	34.4	6.9	33	133
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		318.6	0.0		0.0	0.0	0.0	0.0	16.3	0.9	17.2	3.4	17	66
Total		35.1				945.9	357.2				574.7	574.7	0.0	14.0	119.2	119.2	252.0	371.2	74.2	359	1,435

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.8 Runoff Factor (Corrected for Imperviousness) = 0.20
- Evapotranspiration Factor for Impervious Surfaces = 0.32

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	105 (WET-04/-11) - Upland Area	Soil Type:	Silt Loam
		Vegetation:	Shallow-Rooted
Contributing Area =	1.77 ha	Root Zone Depth $(m) =$	0.62
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	125
Weather Station :	Fergus Shand Dam		125

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		261.5	0.0		0.0	0.0	0.0	0.0	9.5	0.4	10.0	5.0	88	88
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		317.4	0.0		0.0	0.0	0.0	0.0	4.8	0.2	5.0	2.5	44	44
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		377.0	0.0		0.0	0.0	0.0	0.0	2.4	0.2	2.6	1.3	23	23
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		125.0	0.0	30.2	30.2	0.0	0.0	43.9	23.1	25.2	48.3	24.2	428	428
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		125.0	0.0	76.2	76.2	0.0	0.0	10.7	16.9	113.4	130.3	65.2	1,155	1,155
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	99.0	-26.0	109.8	109.8	0.0	2.4	0.0	8.5	56.7	65.2	32.6	577	577
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	69.2	-29.8	119.0	119.0	0.0	13.6	0.0	4.2	28.4	32.6	16.3	289	289
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	59.6	-9.6	106.2	106.2	0.0	9.0	0.0	2.1	14.2	16.3	8.1	144	144
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		74.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	4.1	72	72
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		114.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.0	36	36
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		125.0	10.2	7.2	7.2	0.0	0.0	75.7	38.1	1.8	39.9	19.9	353	353
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		193.6	0.0		0.0	0.0	0.0	0.0	19.0	0.9	19.9	10.0	177	177
Total		35.1				945.9	357.2				563.7	563.7	0.0	25.0	130.2	130.2	252.0	382.2	191.1	3,387	3,387

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.5 Runoff Factor (Corrected for Imperviousness) = 0.50
- Evapotranspiration Factor for Impervious Surfaces = 0.32

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	105 (WET-04/-11) - Forest/Wooded Area	Soil Type:	Silt Loam
		Vegetation:	Mature Forest
Contributing Area =	1.01 ha	Root Zone Depth (m) =	2.00
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	400
Weather Station :	Fergus Shand Dam		400

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET	Moisture Deficit (D)		Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		536.5	0.0		0.0	0.0	0.0	0.0	7.5	0.4	8.0	2.4	24	56
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		592.4	0.0		0.0	0.0	0.0	0.0	3.8	0.2	4.0	1.2	12	28
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		652.0	0.0		0.0	0.0	0.0	0.0	1.9	0.2	2.1	0.6	6	15
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		400.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	14.4	145	339
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		400.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	39.1	394	918
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	372.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	19.5	197	459
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	334.2	-38.4	127.6	127.6	0.0	5.0	0.0	4.2	28.4	32.5	9.8	98	230
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	318.6	-15.6	112.2	112.2	0.0	3.0	0.0	2.1	14.2	16.3	4.9	49	115
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		333.7	15.1	78.0	78.0	0.0	0.0	0.0	1.0	7.1	8.1	2.4	25	57
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		373.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.2	12	29
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		400.0	26.2	7.2	7.2	0.0	0.0	59.7	30.1	1.8	31.9	9.6	96	225
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		468.6	0.0		0.0	0.0	0.0	0.0	15.0	0.9	15.9	4.8	48	112
Total		35.1				945.9	357.2				579.7	579.7	0.0	9.0	114.2	114.2	252.0	366.2	109.9	1,107	2,583

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.7 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.32

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	107 (WET-06/-07/-12) - Upland Area	Soil Type:	Sand
	(Shrub)	Vegetation:	Deep-Rooted (Pasture, Shrubs)
Contributing Area =	7.36 ha	Root Zone Depth (m) =	1.00
Percent Impervious =	0.0%	Soil Moisture Retention Ca	apacity (mm) = 100
Weather Station :	Fergus Shand Dam		100

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		236.5	0.0		0.0	0.0	0.0	0.0	10.1	0.4	10.6	3.2	234	545
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		292.4	0.0		0.0	0.0	0.0	0.0	5.1	0.2	5.3	1.6	117	273
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		352.0	0.0		0.0	0.0	0.0	0.0	2.5	0.2	2.7	0.8	60	141
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		100.0	0.0	30.2	30.2	0.0	0.0	43.9	23.2	25.2	48.4	14.5	1,068	2,492
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		100.0	0.0	76.2	76.2	0.0	0.0	10.7	16.9	113.4	130.3	39.1	2,877	6,712
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	74.6	-25.4	109.2	109.2	0.0	3.0	0.0	8.5	56.7	65.2	19.6	1,438	3,356
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	48.0	-26.6	115.8	115.8	0.0	16.8	0.0	4.2	28.4	32.6	9.8	719	1,678
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	39.6	-8.4	105.0	105.0	0.0	10.2	0.0	2.1	14.2	16.3	4.9	360	839
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		54.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	2.4	180	420
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		94.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.2	90	210
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		100.0	5.2	7.2	7.2	0.0	0.0	80.7	40.6	1.8	42.4	12.7	935	2,182
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		168.6	0.0		0.0	0.0	0.0	0.0	20.3	0.9	21.2	6.4	467	1,091
Total		35.1				945.9	357.2				558.7	558.7	0.0	30.0	135.2	135.2	252.0	387.2	116.1	8,545	19,938

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.7 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.33

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	107 (WET-06/-07/-12) - Upland Area (Crop)	Soil Type:	Sand
		Vegetation:	Shallow-Rooted
Contributing Area =	6.25 ha	Root Zone Depth (m) =	0.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	50
Weather Station :	Fergus Shand Dam		50

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0		0.0	0.0	0.0	0.0	11.6	0.4	12.0	3.6	225	525
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		242.4	0.0		0.0	0.0	0.0	0.0	5.8	0.2	6.0	1.8	112	262
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0		0.0	0.0	0.0	0.0	2.9	0.2	3.1	0.9	58	135
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	30.2	30.2	0.0	0.0	43.9	23.2	25.2	48.4	14.5	907	2,116
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		50.0	0.0	76.2	76.2	0.0	0.0	10.7	16.9	113.4	130.3	39.1	2,444	5,702
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	27.6	-22.4	106.2	106.2	0.0	6.0	0.0	8.5	56.7	65.2	19.6	1,222	2,851
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	11.0	-16.6	105.8	105.8	0.0	26.8	0.0	4.2	28.4	32.6	9.8	611	1,425
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	7.0	-4.0	100.6	100.6	0.0	14.6	0.0	2.1	14.2	16.3	4.9	305	713
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		22.1	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	2.4	153	356
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	27.9	37.1	37.1	0.0	0.0	12.3	6.7	3.5	10.2	3.1	191	446
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		50.0	0.0	7.2	7.2	0.0	0.0	85.8	46.2	1.8	48.0	14.4	900	2,100
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		118.6	0.0		0.0	0.0	0.0	0.0	23.1	0.9	24.0	7.2	450	1,050
Total		35.1				945.9	357.2				541.3	541.3	0.0	47.4	152.6	152.2	252.0	404.2	121.3	7,578	17,682

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.7 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.34

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	107 (WET-06/-07/-12) - Forest/Wooded	Soil Type:	Silt Loam
	Area	Vegetation:	Mature Forest
Contributing Area =	4.42 ha	Root Zone Depth $(m) =$	2.00
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	400
Weather Station :	Fergus Shand Dam		400

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		536.5	0.0		0.0	0.0	0.0	0.0	7.5	0.4	8.0	2.4	106	246
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		592.4	0.0		0.0	0.0	0.0	0.0	3.8	0.2	4.0	1.2	53	123
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		652.0	0.0		0.0	0.0	0.0	0.0	1.9	0.2	2.1	0.6	28	64
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		400.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	14.4	637	1,487
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		400.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	39.1	1,725	4,026
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	372.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	19.5	863	2,013
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	334.2	-38.4	127.6	127.6	0.0	5.0	0.0	4.2	28.4	32.5	9.8	431	1,006
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	318.6	-15.6	112.2	112.2	0.0	3.0	0.0	2.1	14.2	16.3	4.9	216	503
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		333.7	15.1	78.0	78.0	0.0	0.0	0.0	1.0	7.1	8.1	2.4	108	252
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		373.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.2	54	126
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		400.0	26.2	7.2	7.2	0.0	0.0	59.7	30.1	1.8	31.9	9.6	422	985
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		468.6	0.0		0.0	0.0	0.0	0.0	15.0	0.9	15.9	4.8	211	493
Total		35.1				945.9	357.2				579.7	579.7	0.0	9.0	114.2	114.2	252.0	366.2	109.9	4,853	11,324

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.7 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.32

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	108 (WET-08) - Upland Area	Soil Type:	Sand
		Vegetation:	Deep-Rooted (Pasture, Shrubs)
Contributing Area =	2.48 ha	Root Zone Depth $(m) =$	1.00
Percent Impervious =	0.0%	Soil Moisture Retention Cap	pacity $(mm) = 100$
Weather Station :	Fergus Shand Dam		100

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		236.5	0.0		0.0	0.0	0.0	0.0	10.1	0.4	10.6	4.2	105	158
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		292.4	0.0		0.0	0.0	0.0	0.0	5.1	0.2	5.3	2.1	53	79
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		352.0	0.0		0.0	0.0	0.0	0.0	2.5	0.2	2.7	1.1	27	41
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		100.0	0.0	30.2	30.2	0.0	0.0	43.9	23.2	25.2	48.4	19.4	481	721
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		100.0	0.0	76.2	76.2	0.0	0.0	10.7	16.9	113.4	130.3	52.1	1,295	1,943
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	74.6	-25.4	109.2	109.2	0.0	3.0	0.0	8.5	56.7	65.2	26.1	648	971
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	48.0	-26.6	115.8	115.8	0.0	16.8	0.0	4.2	28.4	32.6	13.0	324	486
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	39.6	-8.4	105.0	105.0	0.0	10.2	0.0	2.1	14.2	16.3	6.5	162	243
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		54.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	3.3	81	121
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		94.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.6	40	61
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		100.0	5.2	7.2	7.2	0.0	0.0	80.7	40.6	1.8	42.4	16.9	421	631
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		168.6	0.0		0.0	0.0	0.0	0.0	20.3	0.9	21.2	8.5	210	316
Total		35.1				945.9	357.2				558.7	558.7	0.0	30.0	135.2	135.2	252.0	387.2	154.9	3,847	5,771

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.6 Runoff Factor (Corrected for Imperviousness) = 0.40
- Evapotranspiration Factor for Impervious Surfaces = 0.33

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	103 (WET-09) - Upland Area	Soil Type:	Silt Loam
		Vegetation:	Shallow-Rooted Crops
Contributing Area =	3.02 ha	Root Zone Depth (m) =	0.62
Percent Impervious =	0.0%	Soil Moisture Retention Capacity	(mm) = 125
Weather Station :	Fergus Shand Dam		123

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		261.5	0.0		0.0	0.0	0.0	0.0	9.5	0.4	10.0	6.0	180	120
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		317.4	0.0		0.0	0.0	0.0	0.0	4.8	0.2	5.0	3.0	90	60
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		377.0	0.0		0.0	0.0	0.0	0.0	2.4	0.2	2.6	1.5	47	31
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		125.0	0.0	30.2	30.2	0.0	0.0	43.9	23.1	25.2	48.3	29.0	875	584
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		125.0	0.0	76.2	76.2	0.0	0.0	10.7	16.9	113.4	130.3	78.2	2,360	1,573
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	99.0	-26.0	109.8	109.8	0.0	2.4	0.0	8.5	56.7	65.2	39.1	1,180	787
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	69.2	-29.8	119.0	119.0	0.0	13.6	0.0	4.2	28.4	32.6	19.5	590	393
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	59.6	-9.6	106.2	106.2	0.0	9.0	0.0	2.1	14.2	16.3	9.8	295	197
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		74.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	4.9	148	98
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		114.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.4	74	49
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		125.0	10.2	7.2	7.2	0.0	0.0	75.7	38.1	1.8	39.9	23.9	722	481
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		193.6	0.0		0.0	0.0	0.0	0.0	19.0	0.9	19.9	12.0	361	241
Total		35.1				945.9	357.2				563.7	563.7	0.0	25.0	130.2	130.2	252.0	382.2	229.3	6,922	4,615

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.4 Runoff Factor (Corrected for Imperviousness) = 0.60
- Evapotranspiration Factor for Impervious Surfaces = 0.32

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	103 (WET-09) - Forest/Wooded Area	Soil Type:	Silt Loam
		Vegetation:	Mature Forest
Contributing Area =	1.00 ha	Root Zone Depth $(m) =$	2.00
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	400
Weather Station :	Fergus Shand Dam		400

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		536.5	0.0		0.0	0.0	0.0	0.0	7.5	0.4	8.0	4.0	40	40
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		592.4	0.0		0.0	0.0	0.0	0.0	3.8	0.2	4.0	2.0	20	20
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		652.0	0.0		0.0	0.0	0.0	0.0	1.9	0.2	2.1	1.0	10	10
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		400.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	24.0	241	241
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		400.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	65.1	653	653
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	372.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	32.5	326	326
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	334.2	-38.4	127.6	127.6	0.0	5.0	0.0	4.2	28.4	32.5	16.3	163	163
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	318.6	-15.6	112.2	112.2	0.0	3.0	0.0	2.1	14.2	16.3	8.1	82	82
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		333.7	15.1	78.0	78.0	0.0	0.0	0.0	1.0	7.1	8.1	4.1	41	41
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		373.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.0	20	20
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		400.0	26.2	7.2	7.2	0.0	0.0	59.7	30.1	1.8	31.9	15.9	160	160
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		468.6	0.0		0.0	0.0	0.0	0.0	15.0	0.9	15.9	8.0	80	80
Total		35.1				945.9	357.2				579.7	579.7	0.0	9.0	114.2	114.2	252.0	366.2	183.1	1,836	1,836

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

Pervious Area Infiltration Factor (MECP Table 3.1) =	0.5
Runoff Factor (Corrected for Imperviousness) =	0.50

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	110 (WET-10) - Upland Area	Soil Type:	Fine Sandy Loam
		Vegetation:	Shallow-Rooted Crops
Contributing Area =	0.84 ha	Root Zone Depth $(m) =$	0.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity	y (mm) = 75
Weather Station :	Fergus Shand Dam		15

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		211.5	0.0		0.0	0.0	0.0	0.0	10.9	0.4	11.3	5.7	48	48
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		267.4	0.0		0.0	0.0	0.0	0.0	5.5	0.2	5.7	2.8	24	24
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		327.0	0.0		0.0	0.0	0.0	0.0	2.7	0.2	2.9	1.5	12	12
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		75.0	0.0	30.2	30.2	0.0	0.0	43.9	23.3	25.2	48.5	24.2	204	204
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		75.0	0.0	76.2	76.2	0.0	0.0	10.7	17.0	113.4	130.4	65.2	549	549
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	50.6	-24.4	108.2	108.2	0.0	4.0	0.0	8.5	56.7	65.2	32.6	275	275
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	28.0	-22.6	111.8	111.8	0.0	20.8	0.0	4.2	28.4	32.6	16.3	137	137
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	21.6	-6.4	103.0	103.0	0.0	12.2	0.0	2.1	14.2	16.3	8.1	69	69
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		36.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	4.1	34	34
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		75.0	38.3	37.1	37.1	0.0	0.0	1.8	1.5	3.5	5.0	2.5	21	21
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		75.0	0.0	7.2	7.2	0.0	0.0	85.8	43.6	1.8	45.4	22.7	191	191
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		143.6	0.0		0.0	0.0	0.0	0.0	21.8	0.9	22.7	11.3	96	96
Total		35.1				945.9	357.2				551.7	551.7	0.0	37.0	142.2	142.2	252.0	394.2	197.1	1,661	1,661

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

Pervious Area Infiltration Factor (MECP Table 3.1) =	0.5
Runoff Factor (Corrected for Imperviousness) =	0.50

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	101 (WET-13) - Upland Area	Soil Type:	Silt Loam
		Vegetation: Deep-Rooted Crops (S	hrubs, Pasture)
Contributing Area =	2.17 ha	Root Zone Depth $(m) =$	1.25
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	250
Weather Station :	Fergus Shand Dam		250

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		386.5	0.0		0.0	0.0	0.0	0.0	8.1	0.4	8.6	5.2	112	75
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		442.4	0.0		0.0	0.0	0.0	0.0	4.1	0.2	4.3	2.6	56	37
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		502.0	0.0		0.0	0.0	0.0	0.0	2.0	0.2	2.2	1.3	29	19
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		250.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	28.9	627	418
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		250.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	78.1	1,696	1,131
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	222.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	39.1	848	565
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	187.2	-35.4	124.6	124.6	0.0	8.0	0.0	4.2	28.4	32.6	19.5	424	283
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	173.6	-13.6	110.2	110.2	0.0	5.0	0.0	2.1	14.2	16.3	9.8	212	141
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		188.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	4.9	106	71
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		228.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.4	53	35
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		250.0	21.2	7.2	7.2	0.0	0.0	64.7	32.6	1.8	34.4	20.6	447	298
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		318.6	0.0		0.0	0.0	0.0	0.0	16.3	0.9	17.2	10.3	224	149
Total		35.1				945.9	357.2				574.7	574.7	0.0	14.0	119.2	119.2	252.0	371.2	222.7	4,834	3,222

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.4 Runoff Factor (Corrected for Imperviousness) = 0.60
- Evapotranspiration Factor for Impervious Surfaces = 0.32

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	101 (WET-13) - Forested Area	Soil Type:	Silt Loam
		Vegetation:	Mature Forest
Contributing Area =	0.55 ha	Root Zone Depth $(m) =$	2.00
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	400
Weather Station :	Fergus Shand Dam		400

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		536.5	0.0		0.0	0.0	0.0	0.0	7.5	0.4	8.0	4.0	22	22
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		592.4	0.0		0.0	0.0	0.0	0.0	3.8	0.2	4.0	2.0	11	11
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		652.0	0.0		0.0	0.0	0.0	0.0	1.9	0.2	2.1	1.0	6	6
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		400.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	24.0	132	132
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		400.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	65.1	357	357
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	372.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	32.5	179	179
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	334.2	-38.4	127.6	127.6	0.0	5.0	0.0	4.2	28.4	32.5	16.3	89	89
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	318.6	-15.6	112.2	112.2	0.0	3.0	0.0	2.1	14.2	16.3	8.1	45	45
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		333.7	15.1	78.0	78.0	0.0	0.0	0.0	1.0	7.1	8.1	4.1	22	22
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		373.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.0	11	11
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		400.0	26.2	7.2	7.2	0.0	0.0	59.7	30.1	1.8	31.9	15.9	87	87
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		468.6	0.0		0.0	0.0	0.0	0.0	15.0	0.9	15.9	8.0	44	44
Total		35.1				945.9	357.2				579.7	579.7	0.0	9.0	114.2	114.2	252.0	366.2	183.1	1,005	1,005

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

Pervious Area Infiltration Factor (MECP Table 3.1) =	0.5
Runoff Factor (Corrected for Imperviousness) =	0.50

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	102 - Forested Area East of WET-06	Soil Type:	Silt Loam
Contributing Cateninents.	102 - Polested Alea East of WE1-00		
		Vegetation:	Mature Forest
Contributing Area =	2.62 ha	Root Zone Depth $(m) =$	2.00
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	400
Weather Station :	Fergus Shand Dam		400

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		536.5	0.0		0.0	0.0	0.0	0.0	7.5	0.4	8.0	4.0	104	104
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		592.4	0.0		0.0	0.0	0.0	0.0	3.8	0.2	4.0	2.0	52	52
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		652.0	0.0		0.0	0.0	0.0	0.0	1.9	0.2	2.1	1.0	27	27
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		400.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	24.0	630	630
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		400.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	65.1	1,706	1,706
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	372.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	32.5	853	853
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	334.2	-38.4	127.6	127.6	0.0	5.0	0.0	4.2	28.4	32.5	16.3	427	427
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	318.6	-15.6	112.2	112.2	0.0	3.0	0.0	2.1	14.2	16.3	8.1	213	213
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		333.7	15.1	78.0	78.0	0.0	0.0	0.0	1.0	7.1	8.1	4.1	107	107
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		373.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.0	53	53
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		400.0	26.2	7.2	7.2	0.0	0.0	59.7	30.1	1.8	31.9	15.9	418	418
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		468.6	0.0		0.0	0.0	0.0	0.0	15.0	0.9	15.9	8.0	209	209
Total		35.1			588.7	945.9	357.2				579.7	579.7	0.0	9.0	114.2	114.2	252.0	366.2	183.1	4,799	4,799

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

* Closed depressions and hummocky topography generally indicate no runoff from this area. All moisture that is not taken up by evapotranspiration ultimately recharges: corrections have been made as explained on summary sheet.

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

Pervious Area Infiltration Factor (MECP Table 3.1) =	0.5
Runoff Factor (Corrected for Imperviousness)* =	0.50

$E_{Vabouralisonauon racion for indervious surfaces - 0.52$	Evapotranspiration	Factor for Impervious Surfaces =	0.32
---	--------------------	----------------------------------	------

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	104 - Upland Area East of WET-05	Soil Type:	Silt Loam
		Vegetation:	Shallow-Rooted Crops
Contributing Area =	3.29 ha	Root Zone Depth (m) =	0.62
Percent Impervious =	0.0%	Soil Moisture Retention Capacity	(mm) = 125
Weather Station :	Fergus Shand Dam		123

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		261.5	0.0		0.0	0.0	0.0	0.0	9.5	0.4	10.0	6.0	197	131
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		317.4	0.0		0.0	0.0	0.0	0.0	4.8	0.2	5.0	3.0	98	66
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		377.0	0.0		0.0	0.0	0.0	0.0	2.4	0.2	2.6	1.5	51	34
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		125.0	0.0	30.2	30.2	0.0	0.0	43.9	23.4	25.2	48.6	29.1	959	640
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		125.0	0.0	76.2	76.2	0.0	0.0	10.7	17.0	113.4	130.4	78.3	2,576	1,717
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	99.0	-26.0	109.8	109.8	0.0	2.4	0.0	8.5	56.7	65.2	39.1	1,288	859
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	69.2	-29.8	119.0	119.0	0.0	13.6	0.0	4.3	28.4	32.6	19.6	644	429
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	59.6	-9.6	106.2	106.2	0.0	9.0	0.0	2.1	14.2	16.3	9.8	322	215
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		74.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.2	4.9	161	107
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		114.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.4	80	54
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		125.0	10.2	7.2	7.2	0.0	0.0	75.7	38.1	1.8	39.9	23.9	787	525
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		193.6	0.0		0.0	0.0	0.0	0.0	19.0	0.9	19.9	12.0	394	262
Total		35.1			588.7	945.9	357.2				563.7	563.7	0.0	25.0	130.2	130.7	252.0	382.7	229.6	7,558	5,038

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

* Closed depressions and hummocky topography generally indicate no runoff from this area. All moisture that is not taken up by evapotranspiration ultimately recharges: corrections have been made as explained on summary sheet.

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.40 Runoff Factor (Corrected for Imperviousness)* = 0.60
- Evapotranspiration Factor for Impervious Surfaces = 0.32

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	112 - Upland Area, Western Part of Site	Soil Type:	Sand
		Vegetation:	Shallow-Rooted Crops
Contributing Area =	11.77 ha	Root Zone Depth (m) =	0.50
Percent Impervious =	4.3%	Soil Moisture Retention Capacity (mm) = 50
Weather Station :	Fergus Shand Dam		50

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0		0.0	0.0	0.0	0.0	11.8	0.4	12.2	4.0	476	965
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		242.4	0.0		0.0	0.0	0.0	0.0	5.9	0.2	6.1	2.0	238	483
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0		0.0	0.0	0.0	0.0	3.0	0.2	3.2	1.0	123	248
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	30.2	29.4	0.9	0.9	44.7	23.8	25.2	49.0	16.2	1,906	3,863
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		50.0	0.0	76.2	74.0	2.2	2.2	12.9	18.4	113.4	131.8	43.5	5,123	10,384
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	27.6	-22.4	106.2	103.1	3.1	9.1	3.1	10.7	56.7	67.4	22.3	2,621	5,312
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	11.0	-16.6	105.8	102.8	3.0	29.8	3.0	6.9	28.4	35.2	11.6	1,370	2,776
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	7.0	-4.0	100.6	97.7	2.9	17.5	2.9	4.9	14.2	19.1	6.3	741	1,502
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		22.1	15.1	78.0	75.8	2.2	2.2	2.2	3.6	7.1	10.6	3.5	414	839
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	27.9	37.1	36.0	1.1	1.1	13.3	8.4	3.5	12.0	4.0	466	944
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		50.0	0.0	7.2	7.0	0.2	0.2	86.0	47.2	1.8	49.0	16.2	1,905	3,861
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		118.6	0.0		0.0	0.0	0.0	0.0	23.6	0.9	24.5	8.1	953	1,931
Total		35.1			588.7	945.9	357.2				541.3	525.7	15.6	63.0	168.2	168.1	252.0	420.1	138.8	16,336	33,108

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

* Closed depressions and hummocky topography generally indicate no runoff from this area. All moisture that is not taken up by evapotranspiration ultimately recharges: corrections have been made as explained on summary sheet.

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.70 Runoff Factor (Corrected for Imperviousness)* = 0.33
- Evapotranspiration Factor for Impervious Surfaces = 0.34

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	112 - Forest Area, Western Part of Site	Soil Type:	Sand
		Vegetation:	Mature Forest
Contributing Area =	7.47 ha	Root Zone Depth $(m) =$	2.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	250
Weather Station :	Fergus Shand Dam		230

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		386.5	0.0		0.0	0.0	0.0	0.0	8.1	0.4	8.6	2.6	193	449
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		442.4	0.0		0.0	0.0	0.0	0.0	4.1	0.2	4.3	1.3	96	225
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		502.0	0.0		0.0	0.0	0.0	0.0	2.0	0.2	2.2	0.7	50	117
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		250.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	14.4	1,079	2,517
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		250.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	39.1	2,919	6,811
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	222.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	19.5	1,459	3,405
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	187.2	-35.4	124.6	124.6	0.0	8.0	0.0	4.2	28.4	32.6	9.8	730	1,703
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	173.6	-13.6	110.2	110.2	0.0	5.0	0.0	2.1	14.2	16.3	4.9	365	851
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		188.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	2.4	182	426
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		228.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.2	91	213
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		250.0	21.2	7.2	7.2	0.0	0.0	64.7	32.6	1.8	34.4	10.3	770	1,797
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		318.6	0.0		0.0	0.0	0.0	0.0	16.3	0.9	17.2	5.2	385	899
Total		35.1			588.7	945.9	357.2				574.7	574.7	0.0	14.0	119.2	119.2	252.0	371.2	111.3	8,320	19,412

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

* Closed depressions and hummocky topography generally indicate no runoff from this area. All moisture that is not taken up by evapotranspiration ultimately recharges: corrections have been made as explained on summary sheet.

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.7 Runoff Factor (Corrected for Imperviousness)* = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.32

APPENDIX H2: WATER BALANCE CALCULATIONS – POST-DEVELOPMENT

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	101P (WET-13) - Upland	Soil Type:	Silt Loam
		Vegetation:	Deep-Rooted Crops (Shrubs, Pasture)
Contributing Area =	2.17 ha	Root Zone Depth (m)	= 1.25
Percent Impervious =	0.0%	Soil Moisture Retention	n Capacity (mm) = 250
Weather Station :	Fergus Shand Dam		230

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		386.5	0.0		0.0	0.0	0.0	0.0	8.1	0.4	8.6	5.2	112	75
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		442.4	0.0		0.0	0.0	0.0	0.0	4.1	0.2	4.3	2.6	56	37
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		502.0	0.0		0.0	0.0	0.0	0.0	2.0	0.2	2.2	1.3	29	19
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		250.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	28.9	627	418
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		250.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	78.1	1,695	1,130
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	222.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	39.1	848	565
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	187.2	-35.4	124.6	124.6	0.0	8.0	0.0	4.2	28.4	32.6	19.5	424	283
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	173.6	-13.6	110.2	110.2	0.0	5.0	0.0	2.1	14.2	16.3	9.8	212	141
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		188.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	4.9	106	71
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		228.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.4	53	35
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		250.0	21.2	7.2	7.2	0.0	0.0	64.7	32.6	1.8	34.4	20.6	447	298
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		318.6	0.0		0.0	0.0	0.0	0.0	16.3	0.9	17.2	10.3	224	149
Total		35.1			588.7	945.9	357.2				574.7	574.7	0.0	14.0	119.2	119.2	252.0	371.2	222.7	4,832	3,222

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.40 Runoff Factor (Corrected for Imperviousness) = 0.60
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	101P (WET-13) - Forest	Soil Type:	Silt Loam
		Vegetation:	Mature Forest
Contributing Area =	0.55 ha	Root Zone Depth $(m) =$	2.00
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	400
Weather Station :	Fergus Shand Dam		400

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		536.5	0.0		0.0	0.0	0.0	0.0	7.5	0.4	8.0	4.0	22	22
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		592.4	0.0		0.0	0.0	0.0	0.0	3.8	0.2	4.0	2.0	11	11
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		652.0	0.0		0.0	0.0	0.0	0.0	1.9	0.2	2.1	1.0	6	6
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		400.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	24.0	132	132
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		400.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	65.1	358	358
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	372.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	32.5	179	179
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	334.2	-38.4	127.6	127.6	0.0	5.0	0.0	4.2	28.4	32.5	16.3	90	90
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	318.6	-15.6	112.2	112.2	0.0	3.0	0.0	2.1	14.2	16.3	8.1	45	45
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		333.7	15.1	78.0	78.0	0.0	0.0	0.0	1.0	7.1	8.1	4.1	22	22
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		373.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.0	11	11
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		400.0	26.2	7.2	7.2	0.0	0.0	59.7	30.1	1.8	31.9	15.9	88	88
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		468.6	0.0		0.0	0.0	0.0	0.0	15.0	0.9	15.9	8.0	44	44
Total		35.1			588.7	945.9	357.2				579.7	579.7	0.0	9.0	114.2	114.2	252.0	366.2	183.1	1,007	1,007

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.50 Runoff Factor (Corrected for Imperviousness) = 0.50
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	102P - Forest	Soil Type:	Silt Loam
		Vegetation:	Mature Forest
Contributing Area =	2.62 ha	Root Zone Depth $(m) =$	2.00
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	400
Weather Station :	Fergus Shand Dam		400

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET	Moisture Deficit (D)		Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		536.5	0.0		0.0	0.0	0.0	0.0	7.5	0.4	8.0	4.0	104	104
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		592.4	0.0		0.0	0.0	0.0	0.0	3.8	0.2	4.0	2.0	52	52
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		652.0	0.0		0.0	0.0	0.0	0.0	1.9	0.2	2.1	1.0	27	27
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		400.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	24.0	630	630
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		400.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	65.1	1,705	1,705
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	372.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	32.5	853	853
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	334.2	-38.4	127.6	127.6	0.0	5.0	0.0	4.2	28.4	32.5	16.3	426	426
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	318.6	-15.6	112.2	112.2	0.0	3.0	0.0	2.1	14.2	16.3	8.1	213	213
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		333.7	15.1	78.0	78.0	0.0	0.0	0.0	1.0	7.1	8.1	4.1	107	107
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		373.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.0	53	53
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		400.0	26.2	7.2	7.2	0.0	0.0	59.7	30.1	1.8	31.9	15.9	417	417
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		468.6	0.0		0.0	0.0	0.0	0.0	15.0	0.9	15.9	8.0	209	209
Total		35.1			588.7	945.9	357.2				579.7	579.7	0.0	9.0	114.2	114.2	252.0	366.2	183.1	4,797	4,797

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

* Closed depressions and hummocky topography generally indicate no runoff from this area. All moisture that is not taken up by evapotranspiration ultimately recharges: corrections have been made as explained on summary sheet.

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.50 Runoff Factor (Corrected for Imperviousness) = 0.50
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	103P (WET-09) - Forest	Soil Type:	Silt Loam
		Vegetation:	Mature Forest
Contributing Area =	4.02 ha	Root Zone Depth $(m) =$	2.00
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	400
Weather Station :	Fergus Shand Dam		400

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		536.5	0.0		0.0	0.0	0.0	0.0	7.5	0.4	8.0	4.0	160	160
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		592.4	0.0		0.0	0.0	0.0	0.0	3.8	0.2	4.0	2.0	80	80
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		652.0	0.0		0.0	0.0	0.0	0.0	1.9	0.2	2.1	1.0	42	42
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		400.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	24.0	967	967
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		400.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	65.1	2,617	2,617
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	372.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	32.5	1,309	1,309
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	334.2	-38.4	127.6	127.6	0.0	5.0	0.0	4.2	28.4	32.5	16.3	654	654
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	318.6	-15.6	112.2	112.2	0.0	3.0	0.0	2.1	14.2	16.3	8.1	327	327
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		333.7	15.1	78.0	78.0	0.0	0.0	0.0	1.0	7.1	8.1	4.1	164	164
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		373.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.0	82	82
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		400.0	26.2	7.2	7.2	0.0	0.0	59.7	30.1	1.8	31.9	15.9	640	640
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		468.6	0.0		0.0	0.0	0.0	0.0	15.0	0.9	15.9	8.0	320	320
Total		35.1			588.7	945.9	357.2				579.7	579.7	0.0	9.0	114.2	114.2	252.0	366.2	183.1	7,362	7,362

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.50 Runoff Factor (Corrected for Imperviousness) = 0.50
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	104P - Upland	Soil Type: Silt Loam
		Vegetation: Shallow-Rooted Crops
Contributing Area =	2.16 ha	Root Zone Depth (m) = 0.62
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) = 125
Weather Station :	Fergus Shand Dam	125

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		261.5	0.0		0.0	0.0	0.0	0.0	9.5	0.4	10.0	6.0	129	86
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		317.4	0.0		0.0	0.0	0.0	0.0	4.8	0.2	5.0	3.0	65	43
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		377.0	0.0		0.0	0.0	0.0	0.0	2.4	0.2	2.6	1.5	34	22
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		125.0	0.0	30.2	30.2	0.0	0.0	43.9	23.1	25.2	48.3	29.0	628	418
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		125.0	0.0	76.2	76.2	0.0	0.0	10.7	16.9	113.4	130.3	78.2	1,692	1,128
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	99.0	-26.0	109.8	109.8	0.0	2.4	0.0	8.5	56.7	65.2	39.1	846	564
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	69.2	-29.8	119.0	119.0	0.0	13.6	0.0	4.2	28.4	32.6	19.5	423	282
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	59.6	-9.6	106.2	106.2	0.0	9.0	0.0	2.1	14.2	16.3	9.8	212	141
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		74.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	4.9	106	71
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		114.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.4	53	35
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		125.0	10.2	7.2	7.2	0.0	0.0	75.7	38.1	1.8	39.9	23.9	518	345
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		193.6	0.0		0.0	0.0	0.0	0.0	19.0	0.9	19.9	12.0	259	173
Total		35.1			588.7	945.9	357.2				563.7	563.7	0.0	25.0	130.2	130.2	252.0	382.2	229.3	4,964	3,309

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

* Closed depressions and hummocky topography generally indicate no runoff from this area. All moisture that is not taken up by evapotranspiration ultimately recharges: corrections have been made as explained on summary sheet.

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.40 Runoff Factor (Corrected for Imperviousness) = 0.60
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	104P - Forest	Soil Type:	Silt Loam
		Vegetation:	Mature Forest
Contributing Area =	1.13 ha	Root Zone Depth $(m) =$	2.00
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	400
Weather Station :	Fergus Shand Dam		400

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		536.5	0.0		0.0	0.0	0.0	0.0	7.5	0.4	8.0	4.0	45	45
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		592.4	0.0		0.0	0.0	0.0	0.0	3.8	0.2	4.0	2.0	22	22
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		652.0	0.0		0.0	0.0	0.0	0.0	1.9	0.2	2.1	1.0	12	12
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		400.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	24.0	271	271
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		400.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	65.1	733	733
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	372.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	32.5	366	366
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	334.2	-38.4	127.6	127.6	0.0	5.0	0.0	4.2	28.4	32.5	16.3	183	183
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	318.6	-15.6	112.2	112.2	0.0	3.0	0.0	2.1	14.2	16.3	8.1	92	92
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		333.7	15.1	78.0	78.0	0.0	0.0	0.0	1.0	7.1	8.1	4.1	46	46
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		373.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.0	23	23
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		400.0	26.2	7.2	7.2	0.0	0.0	59.7	30.1	1.8	31.9	15.9	179	179
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		468.6	0.0		0.0	0.0	0.0	0.0	15.0	0.9	15.9	8.0	90	90
Total		35.1			588.7	945.9	357.2				579.7	579.7	0.0	9.0	114.2	114.2	252.0	366.2	183.1	2,061	2,061

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

* Closed depressions and hummocky topography generally indicate no runoff from this area. All moisture that is not taken up by evapotranspiration ultimately recharges: corrections have been made as explained on summary sheet.

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.50 Runoff Factor (Corrected for Imperviousness) = 0.50
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	105P (WET-04/-11) - Upland	Soil Type:	Silt Loam
		Vegetation:	Shallow-Rooted Crops
Contributing Area =	1.77 ha	Root Zone Depth $(m) =$	0.62
Percent Impervious =	0.0%	Soil Moisture Retention Capacity	r (mm) = 125
Weather Station :	Fergus Shand Dam		123

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		261.5	0.0		0.0	0.0	0.0	0.0	9.5	0.4	10.0	5.0	88	88
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		317.4	0.0		0.0	0.0	0.0	0.0	4.8	0.2	5.0	2.5	44	44
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		377.0	0.0		0.0	0.0	0.0	0.0	2.4	0.2	2.6	1.3	23	23
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		125.0	0.0	30.2	30.2	0.0	0.0	43.9	23.1	25.2	48.3	24.2	428	428
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		125.0	0.0	76.2	76.2	0.0	0.0	10.7	16.9	113.4	130.3	65.2	1,153	1,153
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	99.0	-26.0	109.8	109.8	0.0	2.4	0.0	8.5	56.7	65.2	32.6	577	577
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	69.2	-29.8	119.0	119.0	0.0	13.6	0.0	4.2	28.4	32.6	16.3	288	288
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	59.6	-9.6	106.2	106.2	0.0	9.0	0.0	2.1	14.2	16.3	8.1	144	144
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		74.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	4.1	72	72
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		114.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.0	36	36
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		125.0	10.2	7.2	7.2	0.0	0.0	75.7	38.1	1.8	39.9	19.9	353	353
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		193.6	0.0		0.0	0.0	0.0	0.0	19.0	0.9	19.9	10.0	176	176
Total		35.1			588.7	945.9	357.2				563.7	563.7	0.0	25.0	130.2	130.2	252.0	382.2	191.1	3,383	3,383

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.50 Runoff Factor (Corrected for Imperviousness) = 0.50
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	105P (WET-04/-11) - Forest	Soil Type:	Silt Loam
		Vegetation:	Mature Forest
Contributing Area =	1.01 ha	Root Zone Depth $(m) =$	2.00
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	400
Weather Station :	Fergus Shand Dam		400

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		536.5	0.0		0.0	0.0	0.0	0.0	7.5	0.4	8.0	2.4	24	56
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		592.4	0.0		0.0	0.0	0.0	0.0	3.8	0.2	4.0	1.2	12	28
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		652.0	0.0		0.0	0.0	0.0	0.0	1.9	0.2	2.1	0.6	6	15
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		400.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	14.4	146	340
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		400.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	39.1	394	920
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	372.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	19.5	197	460
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	334.2	-38.4	127.6	127.6	0.0	5.0	0.0	4.2	28.4	32.5	9.8	99	230
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	318.6	-15.6	112.2	112.2	0.0	3.0	0.0	2.1	14.2	16.3	4.9	49	115
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		333.7	15.1	78.0	78.0	0.0	0.0	0.0	1.0	7.1	8.1	2.4	25	58
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		373.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.2	12	29
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		400.0	26.2	7.2	7.2	0.0	0.0	59.7	30.1	1.8	31.9	9.6	97	225
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		468.6	0.0		0.0	0.0	0.0	0.0	15.0	0.9	15.9	4.8	48	113
Total		35.1			588.7	945.9	357.2				579.7	579.7	0.0	9.0	114.2	114.2	252.0	366.2	109.9	1,110	2,589

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.70 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	106P (WET-03/-05) - Upland	Soil Type:	Silt Loam
		Vegetation:	Shallow-Rooted Crops
Contributing Area =	6.90 ha	Root Zone Depth $(m) =$	0.62
Percent Impervious =	0.0%	Soil Moisture Retention Capacity	(mm) = 125
Weather Station :	Fergus Shand Dam		125

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		261.5	0.0		0.0	0.0	0.0	0.0	9.5	0.4	10.0	5.0	344	344
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		317.4	0.0		0.0	0.0	0.0	0.0	4.8	0.2	5.0	2.5	172	172
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		377.0	0.0		0.0	0.0	0.0	0.0	2.4	0.2	2.6	1.3	89	89
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		125.0	0.0	30.2	30.2	0.0	0.0	43.9	23.1	25.2	48.3	24.2	1,667	1,667
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		125.0	0.0	76.2	76.2	0.0	0.0	10.7	16.9	113.4	130.3	65.2	4,496	4,496
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	99.0	-26.0	109.8	109.8	0.0	2.4	0.0	8.5	56.7	65.2	32.6	2,248	2,248
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	69.2	-29.8	119.0	119.0	0.0	13.6	0.0	4.2	28.4	32.6	16.3	1,124	1,124
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	59.6	-9.6	106.2	106.2	0.0	9.0	0.0	2.1	14.2	16.3	8.1	562	562
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		74.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	4.1	281	281
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		114.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.0	140	140
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		125.0	10.2	7.2	7.2	0.0	0.0	75.7	38.1	1.8	39.9	19.9	1,375	1,375
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		193.6	0.0		0.0	0.0	0.0	0.0	19.0	0.9	19.9	10.0	688	688
Total		35.1			588.7	945.9	357.2				563.7	563.7	0.0	25.0	130.2	130.2	252.0	382.2	191.1	13,186	13,186

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.50 Runoff Factor (Corrected for Imperviousness) = 0.50
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

	· · - · · -		
Contributing Catchments:	106P (WET-03/-05) - Forest	Soil Type:	Sand
		Vegetation:	Mature Forest
Contributing Area =	0.48 ha	Root Zone Depth $(m) =$	2.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	250
Weather Station :	Fergus Shand Dam		250

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		386.5	0.0		0.0	0.0	0.0	0.0	8.1	0.4	8.6	1.7	8	33
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		442.4	0.0		0.0	0.0	0.0	0.0	4.1	0.2	4.3	0.9	4	16
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		502.0	0.0		0.0	0.0	0.0	0.0	2.0	0.2	2.2	0.4	2	9
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		250.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	9.6	46	185
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		250.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	26.0	125	500
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	222.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	13.0	63	250
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	187.2	-35.4	124.6	124.6	0.0	8.0	0.0	4.2	28.4	32.6	6.5	31	125
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	173.6	-13.6	110.2	110.2	0.0	5.0	0.0	2.1	14.2	16.3	3.3	16	63
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		188.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	1.6	8	31
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		228.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	0.8	4	16
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		250.0	21.2	7.2	7.2	0.0	0.0	64.7	32.6	1.8	34.4	6.9	33	132
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		318.6	0.0		0.0	0.0	0.0	0.0	16.3	0.9	17.2	3.4	16	66
Total		35.1			588.7	945.9	357.2				574.7	574.7	0.0	14.0	119.2	119.2	252.0	371.2	74.2	356	1,425

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.80 Runoff Factor (Corrected for Imperviousness) = 0.20
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	107P (WET-06/-07/-12) - Upland	Soil Type:	Sand
	(Shrub)	Vegetation:	Deep-Rooted (Pasture, Shrubs)
Contributing Area =	7.36 ha	Root Zone Depth (m) =	1.00
Percent Impervious =	0.0%	Soil Moisture Retention Ca	pacity (mm) = 100
Weather Station :	Fergus Shand Dam		100

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		236.5	0.0		0.0	0.0	0.0	0.0	10.1	0.4	10.6	3.2	234	546
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		292.4	0.0		0.0	0.0	0.0	0.0	5.1	0.2	5.3	1.6	117	273
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		352.0	0.0		0.0	0.0	0.0	0.0	2.5	0.2	2.7	0.8	60	141
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		100.0	0.0	30.2	30.2	0.0	0.0	43.9	23.2	25.2	48.4	14.5	1,068	2,493
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		100.0	0.0	76.2	76.2	0.0	0.0	10.7	16.9	113.4	130.3	39.1	2,878	6,715
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	74.6	-25.4	109.2	109.2	0.0	3.0	0.0	8.5	56.7	65.2	19.6	1,439	3,358
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	48.0	-26.6	115.8	115.8	0.0	16.8	0.0	4.2	28.4	32.6	9.8	719	1,679
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	39.6	-8.4	105.0	105.0	0.0	10.2	0.0	2.1	14.2	16.3	4.9	360	839
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		54.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	2.4	180	420
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		94.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.2	90	210
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		100.0	5.2	7.2	7.2	0.0	0.0	80.7	40.6	1.8	42.4	12.7	935	2,182
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		168.6	0.0		0.0	0.0	0.0	0.0	20.3	0.9	21.2	6.4	468	1,091
Total		35.1			588.7	945.9	357.2				558.7	558.7	0.0	30.0	135.2	135.2	252.0	387.2	116.1	8,548	19,946

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.70 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.33

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	107P (WET-06/-07/-12) - Upland	Soil Type:	Sand
	(Crop)	Vegetation:	Shallow-Rooted
Contributing Area =	4.41 ha	Root Zone Depth (m) =	0.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	50
Weather Station :	Fergus Shand Dam		50

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0		0.0	0.0	0.0	0.0	11.6	0.4	12.0	3.6	159	370
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		242.4	0.0		0.0	0.0	0.0	0.0	5.8	0.2	6.0	1.8	79	185
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0		0.0	0.0	0.0	0.0	2.9	0.2	3.1	0.9	41	95
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	30.2	30.2	0.0	0.0	43.9	23.2	25.2	48.4	14.5	640	1,493
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		50.0	0.0	76.2	76.2	0.0	0.0	10.7	16.9	113.4	130.3	39.1	1,724	4,024
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	27.6	-22.4	106.2	106.2	0.0	6.0	0.0	8.5	56.7	65.2	19.6	862	2,012
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	11.0	-16.6	105.8	105.8	0.0	26.8	0.0	4.2	28.4	32.6	9.8	431	1,006
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	7.0	-4.0	100.6	100.6	0.0	14.6	0.0	2.1	14.2	16.3	4.9	216	503
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		22.1	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	2.4	108	251
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	27.9	37.1	37.1	0.0	0.0	12.3	6.7	3.5	10.2	3.1	135	315
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		50.0	0.0	7.2	7.2	0.0	0.0	85.8	46.2	1.8	48.0	14.4	635	1,482
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		118.6	0.0		0.0	0.0	0.0	0.0	23.1	0.9	24.0	7.2	318	741
Total		35.1			588.7	945.9	357.2				541.3	541.3	0.0	47.4	152.6	152.2	252.0	404.2	121.3	5,348	12,478

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.70 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.34

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	107P (WET-06/-07/-12) - Forest	Soil Type:	Silt Loam
		Vegetation:	Mature Forest
Contributing Area =	6.22 ha	Root Zone Depth $(m) =$	2.00
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	400
Weather Station :	Fergus Shand Dam		400

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		536.5	0.0		0.0	0.0	0.0	0.0	7.5	0.4	8.0	2.4	149	347
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		592.4	0.0		0.0	0.0	0.0	0.0	3.8	0.2	4.0	1.2	74	173
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		652.0	0.0		0.0	0.0	0.0	0.0	1.9	0.2	2.1	0.6	39	91
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		400.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	14.4	897	2,093
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		400.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	39.1	2,429	5,667
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	372.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	19.5	1,214	2,833
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	334.2	-38.4	127.6	127.6	0.0	5.0	0.0	4.2	28.4	32.5	9.8	607	1,417
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	318.6	-15.6	112.2	112.2	0.0	3.0	0.0	2.1	14.2	16.3	4.9	304	708
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		333.7	15.1	78.0	78.0	0.0	0.0	0.0	1.0	7.1	8.1	2.4	152	354
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		373.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.2	76	177
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		400.0	26.2	7.2	7.2	0.0	0.0	59.7	30.1	1.8	31.9	9.6	594	1,387
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		468.6	0.0		0.0	0.0	0.0	0.0	15.0	0.9	15.9	4.8	297	693
Total		35.1			588.7	945.9	357.2				579.7	579.7	0.0	9.0	114.2	114.2	252.0	366.2	109.9	6,831	15,940

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.70 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	108P (WET-08) - Upland	Soil Type: San	d
		Vegetation: Deep-Rooted (Pasture, Shrubs	s)
Contributing Area =	2.40 ha	Root Zone Depth (m) = 1.0	0
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) = 10	0
Weather Station :	Fergus Shand Dam	10	0

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		236.5	0.0		0.0	0.0	0.0	0.0	10.1	0.4	10.6	4.2	102	153
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		292.4	0.0		0.0	0.0	0.0	0.0	5.1	0.2	5.3	2.1	51	76
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		352.0	0.0		0.0	0.0	0.0	0.0	2.5	0.2	2.7	1.1	26	39
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		100.0	0.0	30.2	30.2	0.0	0.0	43.9	23.2	25.2	48.4	19.4	464	697
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		100.0	0.0	76.2	76.2	0.0	0.0	10.7	16.9	113.4	130.3	52.1	1,251	1,877
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	74.6	-25.4	109.2	109.2	0.0	3.0	0.0	8.5	56.7	65.2	26.1	626	938
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	48.0	-26.6	115.8	115.8	0.0	16.8	0.0	4.2	28.4	32.6	13.0	313	469
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	39.6	-8.4	105.0	105.0	0.0	10.2	0.0	2.1	14.2	16.3	6.5	156	235
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		54.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	3.3	78	117
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		94.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.6	39	59
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		100.0	5.2	7.2	7.2	0.0	0.0	80.7	40.6	1.8	42.4	16.9	407	610
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		168.6	0.0		0.0	0.0	0.0	0.0	20.3	0.9	21.2	8.5	203	305
Total		35.1			588.7	945.9	357.2				558.7	558.7	0.0	30.0	135.2	135.2	252.0	387.2	154.9	3,717	5,575

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.60 Runoff Factor (Corrected for Imperviousness) = 0.40
- Evapotranspiration Factor for Impervious Surfaces = 0.33

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	109P (WET-02) - Upland	Soil Type:	Sand
	Portion Unaffected by Pre-Grade	Vegetation:	Shallow-Rooted
Contributing Area =	3.59 ha	Root Zone Depth $(m) =$	0.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	50
Weather Station :	Fergus Shand Dam		50

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0		0.0	0.0	0.0	0.0	11.6	0.4	12.0	4.8	172	258
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		242.4	0.0		0.0	0.0	0.0	0.0	5.8	0.2	6.0	2.4	86	129
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0		0.0	0.0	0.0	0.0	2.9	0.2	3.1	1.2	44	67
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	30.2	30.2	0.0	0.0	43.9	23.4	25.2	48.6	19.4	698	1,046
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		50.0	0.0	76.2	76.2	0.0	0.0	10.7	17.0	113.4	130.4	52.2	1,873	2,810
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	27.6	-22.4	106.2	106.2	0.0	6.0	0.0	8.5	56.7	65.2	26.1	937	1,405
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	11.0	-16.6	105.8	105.8	0.0	26.8	0.0	4.3	28.4	32.6	13.0	468	702
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	7.0	-4.0	100.6	100.6	0.0	14.6	0.0	2.1	14.2	16.3	6.5	234	351
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		22.1	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.2	3.3	117	176
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	27.9	37.1	37.1	0.0	0.0	12.3	6.7	3.5	10.2	4.1	146	220
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		50.0	0.0	7.2	7.2	0.0	0.0	85.8	46.2	1.8	48.0	19.2	689	1,034
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		118.6	0.0		0.0	0.0	0.0	0.0	23.1	0.9	24.0	9.6	345	517
Total		35.1			588.7	945.9	357.2				541.3	541.3	0.0	47.4	152.6	152.6	252.0	404.6	161.8	5,810	8,715

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.60 Runoff Factor (Corrected for Imperviousness) = 0.40
- Evapotranspiration Factor for Impervious Surfaces = 0.34

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	109P (WET-02) - Forest	Soil Type:	Sand
	Portion Unaffected by Pre-Grade	Vegetation:	Mature Forest
Contributing Area =	0.17 ha	Root Zone Depth $(m) =$	2.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	250
Weather Station :	Fergus Shand Dam		230

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		386.5	0.0		0.0	0.0	0.0	0.0	8.1	0.4	8.6	2.6	4	10
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		442.4	0.0		0.0	0.0	0.0	0.0	4.1	0.2	4.3	1.3	2	5
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		502.0	0.0		0.0	0.0	0.0	0.0	2.0	0.2	2.2	0.7	1	3
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		250.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	14.4	25	57
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		250.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	39.1	66	155
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	222.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	19.5	33	77
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	187.2	-35.4	124.6	124.6	0.0	8.0	0.0	4.2	28.4	32.6	9.8	17	39
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	173.6	-13.6	110.2	110.2	0.0	5.0	0.0	2.1	14.2	16.3	4.9	8	19
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		188.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	2.4	4	10
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		228.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.2	2	5
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		250.0	21.2	7.2	7.2	0.0	0.0	64.7	32.6	1.8	34.4	10.3	18	41
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		318.6	0.0		0.0	0.0	0.0	0.0	16.3	0.9	17.2	5.2	9	20
Total		35.1			588.7	945.9	357.2				574.7	574.7	0.0	14.0	119.2	119.2	252.0	371.2	111.3	189	442

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.70 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

I ODI DEVELOI MENT	CONDITIONS		
Contributing Catchments:	109P (E&SC Pond) - Upland	Soil Type:	Sand
	Portion Affected by Pre-Grade	Vegetation:	Shallow-Rooted
Contributing Area =	1.34 ha	Root Zone Depth $(m) =$	0.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	50
Weather Station :	Fergus Shand Dam		50

This catchment will be graded such that runoff will flow to an Erosion and Sediment Control pond with no intended overflow to WET-02.

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0		0.0	0.0	0.0	0.0	11.6	0.4	12.0	4.2	56	105
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		242.4	0.0		0.0	0.0	0.0	0.0	5.8	0.2	6.0	2.1	28	52
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0		0.0	0.0	0.0	0.0	2.9	0.2	3.1	1.1	14	27
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	30.2	30.2	0.0	0.0	43.9	23.4	25.2	48.6	17.0	228	423
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		50.0	0.0	76.2	76.2	0.0	0.0	10.7	17.0	113.4	130.4	45.7	612	1,136
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	27.6	-22.4	106.2	106.2	0.0	6.0	0.0	8.5	56.7	65.2	22.8	306	568
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	11.0	-16.6	105.8	105.8	0.0	26.8	0.0	4.3	28.4	32.6	11.4	153	284
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	7.0	-4.0	100.6	100.6	0.0	14.6	0.0	2.1	14.2	16.3	5.7	76	142
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		22.1	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.2	2.9	38	71
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	27.9	37.1	37.1	0.0	0.0	12.3	6.7	3.5	10.2	3.6	48	89
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		50.0	0.0	7.2	7.2	0.0	0.0	85.8	46.2	1.8	48.0	16.8	225	418
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		118.6	0.0		0.0	0.0	0.0	0.0	23.1	0.9	24.0	8.4	113	209
Total		35.1			588.7	945.9	357.2				541.3	541.3	0.0	47.4	152.6	152.6	252.0	404.6	141.6	1,898	3,524

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

* Closed drainage indicates no runoff from this area. All moisture that is not taken up by evapotranspiration ultimately recharges: corrections have been made as explained on summary sheet.

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.65 Runoff Factor (Corrected for Imperviousness) = 0.35
- Evapotranspiration Factor for Impervious Surfaces = 0.34

POST-DEVELOPMENT CONDITIONS

1001-DEVELOI MENT	CONDITIOND		
Contributing Catchments:	109P (WET-02) - Upland	Soil Type:	Sand
	Portion Affected by Pre-Grade	Vegetation:	Shallow-Rooted
Contributing Area =	3.00 ha	Root Zone Depth $(m) =$	0.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	50
Weather Station :	Fergus Shand Dam		50

This catchment will be graded such that runoff will flow to WET-02 via a swale and spreader facilities.

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0		0.0	0.0	0.0	0.0	11.6	0.4	12.0	4.2	126	234
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		242.4	0.0		0.0	0.0	0.0	0.0	5.8	0.2	6.0	2.1	63	117
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0		0.0	0.0	0.0	0.0	2.9	0.2	3.1	1.1	32	60
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	30.2	30.2	0.0	0.0	43.9	23.4	25.2	48.6	17.0	510	947
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		50.0	0.0	76.2	76.2	0.0	0.0	10.7	17.0	113.4	130.4	45.7	1,370	2,544
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	27.6	-22.4	106.2	106.2	0.0	6.0	0.0	8.5	56.7	65.2	22.8	685	1,272
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	11.0	-16.6	105.8	105.8	0.0	26.8	0.0	4.3	28.4	32.6	11.4	342	636
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	7.0	-4.0	100.6	100.6	0.0	14.6	0.0	2.1	14.2	16.3	5.7	171	318
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		22.1	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.2	2.9	86	159
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	27.9	37.1	37.1	0.0	0.0	12.3	6.7	3.5	10.2	3.6	107	199
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		50.0	0.0	7.2	7.2	0.0	0.0	85.8	46.2	1.8	48.0	16.8	504	936
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		118.6	0.0		0.0	0.0	0.0	0.0	23.1	0.9	24.0	8.4	252	468
Total		35.1			588.7	945.9	357.2				541.3	541.3	0.0	47.4	152.6	152.6	252.0	404.6	141.6	4,248	7,890

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

* Closed drainage indicates no runoff from this area. All moisture that is not taken up by evapotranspiration ultimately recharges: corrections have been made as explained on summary sheet.

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.65 Runoff Factor (Corrected for Imperviousness) = 0.35
- Evapotranspiration Factor for Impervious Surfaces = 0.34

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	109P (E&SC Pond) - Forest	Soil Type:	Sand
	Portion Affected by Pre-Grade	Vegetation:	Mature Forest
Contributing Area =	0.07 ha	Root Zone Depth $(m) =$	2.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	250
Weather Station :	Fergus Shand Dam		230

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		386.5	0.0		0.0	0.0	0.0	0.0	8.1	0.4	8.6	2.6	2	4
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		442.4	0.0		0.0	0.0	0.0	0.0	4.1	0.2	4.3	1.3	1	2
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		502.0	0.0		0.0	0.0	0.0	0.0	2.0	0.2	2.2	0.7	0	1
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		250.0	0.0	30.2	30.2	0.0	0.0	43.9	22.9	25.2	48.1	14.4	10	24
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		250.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	39.1	27	64
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	222.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	19.5	14	32
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	187.2	-35.4	124.6	124.6	0.0	8.0	0.0	4.2	28.4	32.6	9.8	7	16
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	173.6	-13.6	110.2	110.2	0.0	5.0	0.0	2.1	14.2	16.3	4.9	3	8
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		188.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	2.4	2	4
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		228.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.2	1	2
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		250.0	21.2	7.2	7.2	0.0	0.0	64.7	32.6	1.8	34.4	10.3	7	17
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		318.6	0.0		0.0	0.0	0.0	0.0	16.3	0.9	17.2	5.2	4	8
Total		35.1			588.7	945.9	357.2				574.7	574.7	0.0	14.0	119.2	119.2	252.0	371.2	111.3	78	182

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

* Closed drainage indicates no runoff from this area. All moisture that is not taken up by evapotranspiration ultimately recharges: corrections have been made as explained on summary sheet.

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.70 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	110P (WET10) - Upland	Soil Type: Silt Loam
		Vegetation: Shallow-Rooted Crops
Contributing Area =	0.78 ha	Root Zone Depth (m) = 0.62
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) = 125
Weather Station :	Fergus Shand Dam	125

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		261.5	0.0		0.0	0.0	0.0	0.0	9.5	0.4	10.0	5.0	39	39
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		317.4	0.0		0.0	0.0	0.0	0.0	4.8	0.2	5.0	2.5	19	19
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		377.0	0.0		0.0	0.0	0.0	0.0	2.4	0.2	2.6	1.3	10	10
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		125.0	0.0	30.2	30.2	0.0	0.0	43.9	23.1	25.2	48.3	24.2	188	188
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		125.0	0.0	76.2	76.2	0.0	0.0	10.7	16.9	113.4	130.3	65.2	508	508
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	99.0	-26.0	109.8	109.8	0.0	2.4	0.0	8.5	56.7	65.2	32.6	254	254
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	69.2	-29.8	119.0	119.0	0.0	13.6	0.0	4.2	28.4	32.6	16.3	127	127
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	59.6	-9.6	106.2	106.2	0.0	9.0	0.0	2.1	14.2	16.3	8.1	64	64
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		74.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	4.1	32	32
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		114.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.0	16	16
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		125.0	10.2	7.2	7.2	0.0	0.0	75.7	38.1	1.8	39.9	19.9	155	155
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		193.6	0.0		0.0	0.0	0.0	0.0	19.0	0.9	19.9	10.0	78	78
Total		35.1			588.7	945.9	357.2				563.7	563.7	0.0	25.0	130.2	130.2	252.0	382.2	191.1	1,491	1,491

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.50 Runoff Factor (Corrected for Imperviousness) = 0.50
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	111P (WET-01) - Upland	Soil Type:	Sand
		Vegetation:	Shallow-Rooted
Contributing Area =	1.40 ha	Root Zone Depth $(m) =$	0.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	50
Weather Station :	Fergus Shand Dam		50

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0		0.0	0.0	0.0	0.0	11.6	0.4	12.0	4.8	67	101
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		242.4	0.0		0.0	0.0	0.0	0.0	5.8	0.2	6.0	2.4	34	50
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0		0.0	0.0	0.0	0.0	2.9	0.2	3.1	1.2	17	26
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	30.2	30.2	0.0	0.0	43.9	23.4	25.2	48.6	19.4	272	408
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		50.0	0.0	76.2	76.2	0.0	0.0	10.7	17.0	113.4	130.4	52.2	730	1,096
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	27.6	-22.4	106.2	106.2	0.0	6.0	0.0	8.5	56.7	65.2	26.1	365	548
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	11.0	-16.6	105.8	105.8	0.0	26.8	0.0	4.3	28.4	32.6	13.0	183	274
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	7.0	-4.0	100.6	100.6	0.0	14.6	0.0	2.1	14.2	16.3	6.5	91	137
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		22.1	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.2	3.3	46	68
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	27.9	37.1	37.1	0.0	0.0	12.3	6.7	3.5	10.2	4.1	57	86
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		50.0	0.0	7.2	7.2	0.0	0.0	85.8	46.2	1.8	48.0	19.2	269	403
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		118.6	0.0		0.0	0.0	0.0	0.0	23.1	0.9	24.0	9.6	134	202
Total		35.1			588.7	945.9	357.2				541.3	541.3	0.0	47.4	152.6	152.6	252.0	404.6	161.8	2,266	3,399

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.60 Runoff Factor (Corrected for Imperviousness) = 0.40
- Evapotranspiration Factor for Impervious Surfaces = 0.34

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	111P (WET-01) - Forest	Soil Type:	Sand
		Vegetation:	Mature Forest
Contributing Area =	0.19 ha	Root Zone Depth $(m) =$	2.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	250
Weather Station :	Fergus Shand Dam		250

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		386.5	0.0		0.0	0.0	0.0	0.0	8.1	0.4	8.6	2.6	5	11
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		442.4	0.0		0.0	0.0	0.0	0.0	4.1	0.2	4.3	1.3	2	6
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		502.0	0.0		0.0	0.0	0.0	0.0	2.0	0.2	2.2	0.7	1	3
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		250.0	0.0	30.2	30.2	0.0	0.0	43.9	23.0	25.2	48.2	14.5	27	64
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		250.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	39.1	74	173
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	223.6	-26.4	110.2	110.2	0.0	2.0	0.0	8.4	56.7	65.1	19.5	37	87
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	187.2	-36.4	125.6	125.6	0.0	7.0	0.0	4.2	28.4	32.6	9.8	19	43
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	173.6	-13.6	110.2	110.2	0.0	5.0	0.0	2.1	14.2	16.3	4.9	9	22
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		188.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	2.4	5	11
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		228.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.2	2	5
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		250.0	21.2	7.2	7.2	0.0	0.0	64.7	32.6	1.8	34.4	10.3	20	46
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		318.6	0.0		0.0	0.0	0.0	0.0	16.3	0.9	17.2	5.2	10	23
Total		35.1			588.7	945.9	357.2				574.7	574.7	0.0	14.0	119.2	119.3	252.0	371.3	111.4	212	494

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.70 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS	

I ODI DEVELOTIMENT	CONDITIONS		
Contributing Catchments:	201 - Pre-Grade	Soil Type:	Fine Sandy Loam
	Portion Affected by Pre-Grade	Vegetation:	Shallow-Rooted Crops
Contributing Area =	2.09 ha	Root Zone Depth $(m) =$	0.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity	r(mm) = 75
Weather Station :	Fergus Shand Dam		75

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		211.5	0.0		0.0	0.0	0.0	0.0	10.9	0.4	11.4	3.4	71	166
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		267.4	0.0		0.0	0.0	0.0	0.0	5.5	0.2	5.7	1.7	36	83
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		327.0	0.0		0.0	0.0	0.0	0.0	2.7	0.2	2.9	0.9	18	43
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		75.0	0.0	30.2	30.2	0.0	0.0	43.9	23.7	25.2	48.9	14.7	306	715
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		75.0	0.0	76.2	76.2	0.0	0.0	10.7	17.2	113.4	130.6	39.2	819	1,911
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	50.6	-24.4	108.2	108.2	0.0	4.0	0.0	8.6	56.7	65.3	19.6	409	955
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	28.0	-22.6	111.8	111.8	0.0	20.8	0.0	4.3	28.4	32.6	9.8	205	478
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	21.6	-6.4	103.0	103.0	0.0	12.2	0.0	2.1	14.2	16.3	4.9	102	239
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		36.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.2	2.4	51	119
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		75.0	38.3	37.1	37.1	0.0	0.0	1.8	1.5	3.5	5.0	1.5	31	73
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		75.0	0.0	7.2	7.2	0.0	0.0	85.8	43.6	1.8	45.4	13.6	285	664
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		143.6	0.0		0.0	0.0	0.0	0.0	21.8	0.9	22.7	6.8	142	332
Total		35.1			588.7	945.9	357.2				551.7	551.7	0.0	37.0	142.2	143.0	252.0	395.0	118.5	2,476	5,778

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

* Closed drainage indicates no runoff from this area. All moisture that is not taken up by evapotranspiration ultimately recharges: corrections have been made as explained on summary sheet.

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.70 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.33

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	201 - Forest	Soil Type:	Sand
	Portion Unaffected by Pre-Grade	Vegetation:	Mature Forest
Contributing Area =	0.12 ha	Root Zone Depth $(m) =$	2.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	250
Weather Station :	Fergus Shand Dam		250

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		386.5	0.0		0.0	0.0	0.0	0.0	8.1	0.4	8.6	2.6	3	7
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		442.4	0.0		0.0	0.0	0.0	0.0	4.1	0.2	4.3	1.3	2	4
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		502.0	0.0		0.0	0.0	0.0	0.0	2.0	0.2	2.2	0.7	1	2
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		250.0	0.0	30.2	30.2	0.0	0.0	43.9	23.0	25.2	48.2	14.5	17	40
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		250.0	0.0	76.2	76.2	0.0	0.0	10.7	16.8	113.4	130.2	39.1	47	109
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	222.6	-27.4	111.2	111.2	0.0	1.0	0.0	8.4	56.7	65.1	19.5	23	55
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	187.2	-35.4	124.6	124.6	0.0	8.0	0.0	4.2	28.4	32.6	9.8	12	27
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	173.6	-13.6	110.2	110.2	0.0	5.0	0.0	2.1	14.2	16.3	4.9	6	14
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		188.7	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	2.4	3	7
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		228.9	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	1.2	1	3
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		250.0	21.2	7.2	7.2	0.0	0.0	64.7	32.6	1.8	34.4	10.3	12	29
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		318.6	0.0		0.0	0.0	0.0	0.0	16.3	0.9	17.2	5.2	6	14
Total		35.1			588.7	945.9	357.2				574.7	574.7	0.0	14.0	119.2	119.3	252.0	371.3	111.4	134	312

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

* Closed drainage indicates no runoff from this area. All moisture that is not taken up by evapotranspiration ultimately recharges: corrections have been made as explained on summary sheet.

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.70 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.32

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	202 - Developed Area (Parking)	Soil Type: San	d
		Vegetation: Deep-Rooted (Pasture, Shrubs	5)
Contributing Area =	4.91 ha	Root Zone Depth (m) = 1.0	0
Percent Impervious =	100.0%	Soil Moisture Retention Capacity (mm) = 10	n
Weather Station :	Fergus Shand Dam	10	0

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		236.5	0.0		0.0	0.0	0.0	0.0	16.1	0.4	16.5	14.9	730	81
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		292.4	0.0		0.0	0.0	0.0	0.0	8.0	0.2	8.3	7.4	365	41
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		352.0	0.0		0.0	0.0	0.0	0.0	4.0	0.2	4.2	3.8	186	21
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		100.0	0.0	30.2	9.9	20.3	20.3	64.2	34.1	25.2	59.3	53.4	2,620	291
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		100.0	0.0	76.2	25.0	51.2	51.2	61.9	48.0	113.4	161.4	145.3	7,133	793
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	74.6	-25.4	109.2	35.8	73.4	76.5	73.4	60.7	56.7	117.4	105.7	5,189	577
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	48.0	-26.6	115.8	37.9	77.9	94.7	77.9	69.3	28.4	97.6	87.9	4,315	479
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	39.6	-8.4	105.0	34.4	70.6	80.8	70.6	70.0	14.2	84.1	75.7	3,718	413
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		54.7	15.1	78.0	25.5	52.5	52.5	52.5	61.2	7.1	68.3	61.5	3,018	335
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		94.9	40.2	37.1	12.1	24.9	24.9	24.9	43.1	3.5	46.6	41.9	2,059	229
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		100.0	5.2	7.2	2.4	4.8	4.8	85.5	64.3	1.8	66.0	59.4	2,919	324
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		168.6	0.0		0.0	0.0	0.0	0.0	32.1	0.9	33.0	29.7	1,459	162
Total		35.1			588.7	945.9	357.2				558.7	183.0	375.7	405.7	510.9	510.9	252.0	762.9	686.6	33,711	3,746

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Runoff Factor (provided by AECOM) = 0.90
- Evapotranspiration Factor for Impervious Surfaces = 0.33

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	203 - Developed Area (Warehouse)	Soil Type:	Sand
		Vegetation:	Deep-Rooted (Pasture, Shrubs)
Contributing Area =	0.71 ha	Root Zone Depth $(m) =$	1.00
Percent Impervious =	100.0%	Soil Moisture Retention Ca	pacity (mm) = 100
Weather Station :	Fergus Shand Dam		100

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		236.5	0.0		0.0	0.0	0.0	0.0	16.1	0.4	16.5	16.5	117	0
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		292.4	0.0		0.0	0.0	0.0	0.0	8.0	0.2	8.3	8.3	59	0
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		352.0	0.0		0.0	0.0	0.0	0.0	4.0	0.2	4.2	4.2	30	0
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		100.0	0.0	30.2	9.9	20.3	20.3	64.2	33.8	25.2	59.0	59.0	419	0
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		100.0	0.0	76.2	25.0	51.2	51.2	61.9	47.9	113.4	161.3	161.3	1,145	0
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	74.6	-25.4	109.2	35.8	73.4	76.5	73.4	60.7	56.7	117.4	117.4	833	0
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	48.0	-26.6	115.8	37.9	77.9	94.7	77.9	69.3	28.4	97.6	97.6	693	0
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	39.6	-8.4	105.0	34.4	70.6	80.8	70.6	69.9	14.2	84.1	84.1	597	0
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		54.7	15.1	78.0	25.5	52.5	52.5	52.5	61.2	7.1	68.3	68.3	485	0
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		94.9	40.2	37.1	12.1	24.9	24.9	24.9	43.1	3.5	46.6	46.6	331	0
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		100.0	5.2	7.2	2.4	4.8	4.8	85.5	64.3	1.8	66.0	66.0	469	0
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		168.6	0.0		0.0	0.0	0.0	0.0	32.1	0.9	33.0	33.0	234	0
Total		35.1			588.7	945.9	357.2				558.7	183.0	375.7	405.7	510.9	510.4	252.0	762.4	762.4	5,413	0

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.90 Runoff Factor (Corrected for Imperviousness) = 1.00
- Evapotranspiration Factor for Impervious Surfaces = 0.33

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	204 - Developed Area (Warehouse)	Soil Type:	Sand
		Vegetation:	Deep-Rooted (Pasture, Shrubs)
Contributing Area =	1.45 ha	Root Zone Depth $(m) =$	1.00
Percent Impervious =	100.0%	Soil Moisture Retention Ca	pacity (mm) = 100
Weather Station :	Fergus Shand Dam		100

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		236.5	0.0		0.0	0.0	0.0	0.0	16.1	0.4	16.5	14.9	215	24
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		292.4	0.0		0.0	0.0	0.0	0.0	8.0	0.2	8.3	7.4	108	12
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		352.0	0.0		0.0	0.0	0.0	0.0	4.0	0.2	4.2	3.8	55	6
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		100.0	0.0	30.2	9.9	20.3	20.3	64.2	33.7	25.2	58.9	53.1	769	85
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		100.0	0.0	76.2	25.0	51.2	51.2	61.9	47.8	113.4	161.2	145.1	2,104	234
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	74.6	-25.4	109.2	35.8	73.4	76.5	73.4	60.6	56.7	117.3	105.6	1,531	170
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	48.0	-26.6	115.8	37.9	77.9	94.7	77.9	69.3	28.4	97.6	87.8	1,274	142
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	39.6	-8.4	105.0	34.4	70.6	80.8	70.6	69.9	14.2	84.1	75.7	1,098	122
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		54.7	15.1	78.0	25.5	52.5	52.5	52.5	61.2	7.1	68.3	61.5	891	99
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		94.9	40.2	37.1	12.1	24.9	24.9	24.9	43.1	3.5	46.6	41.9	608	68
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		100.0	5.2	7.2	2.4	4.8	4.8	85.5	64.3	1.8	66.0	59.4	862	96
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		168.6	0.0		0.0	0.0	0.0	0.0	32.1	0.9	33.0	29.7	431	48
Total		35.1			588.7	945.9	357.2				558.7	183.0	375.7	405.7	510.9	510.2	252.0	762.2	685.9	9,946	1,105

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Runoff Factor (provided by AECOM) = 0.90
- Evapotranspiration Factor for Impervious Surfaces = 0.33

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	206 - Pre-Grade	Soil Type:	Sand
		Vegetation:	Shallow-Rooted
Contributing Area =	4.48 ha	Root Zone Depth $(m) =$	0.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	50
Weather Station :	Fergus Shand Dam		50

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0		0.0	0.0	0.0	0.0	11.6	0.4	12.0	3.6	161	376
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		242.4	0.0		0.0	0.0	0.0	0.0	5.8	0.2	6.0	1.8	81	188
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0		0.0	0.0	0.0	0.0	2.9	0.2	3.1	0.9	42	97
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	30.2	30.2	0.0	0.0	43.9	23.4	25.2	48.6	14.6	653	1,523
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		50.0	0.0	76.2	76.2	0.0	0.0	10.7	17.0	113.4	130.4	39.1	1,753	4,091
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	27.6	-22.4	106.2	106.2	0.0	6.0	0.0	8.5	56.7	65.2	19.6	877	2,045
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	11.0	-16.6	105.8	105.8	0.0	26.8	0.0	4.3	28.4	32.6	9.8	438	1,023
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	7.0	-4.0	100.6	100.6	0.0	14.6	0.0	2.1	14.2	16.3	4.9	219	511
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		22.1	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.2	2.4	110	256
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	27.9	37.1	37.1	0.0	0.0	12.3	6.7	3.5	10.2	3.1	137	320
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		50.0	0.0	7.2	7.2	0.0	0.0	85.8	46.2	1.8	48.0	14.4	645	1,505
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		118.6	0.0		0.0	0.0	0.0	0.0	23.1	0.9	24.0	7.2	323	753
Total		35.1			588.7	945.9	357.2				541.3	541.3	0.0	47.4	152.6	152.6	252.0	404.6	121.4	5,438	12,688

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

* Closed drainage indicates no runoff from this area. All moisture that is not taken up by evapotranspiration ultimately recharges: corrections have been made as explained on summary sheet.

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.70 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.34

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	205 - Pre-Grade	Soil Type:	Sand
		Vegetation:	Shallow-Rooted
Contributing Area =	3.89 ha	Root Zone Depth $(m) =$	0.50
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	50
Weather Station :	Fergus Shand Dam		50

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0		0.0	0.0	0.0	0.0	11.6	0.4	12.0	3.6	140	327
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		242.4	0.0		0.0	0.0	0.0	0.0	5.8	0.2	6.0	1.8	70	163
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0		0.0	0.0	0.0	0.0	2.9	0.2	3.1	0.9	36	84
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	30.2	30.2	0.0	0.0	43.9	23.4	25.2	48.6	14.6	567	1,323
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		50.0	0.0	76.2	76.2	0.0	0.0	10.7	17.0	113.4	130.4	39.1	1,522	3,552
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	27.6	-22.4	106.2	106.2	0.0	6.0	0.0	8.5	56.7	65.2	19.6	761	1,776
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	11.0	-16.6	105.8	105.8	0.0	26.8	0.0	4.3	28.4	32.6	9.8	381	888
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	7.0	-4.0	100.6	100.6	0.0	14.6	0.0	2.1	14.2	16.3	4.9	190	444
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		22.1	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.2	2.4	95	222
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	27.9	37.1	37.1	0.0	0.0	12.3	6.7	3.5	10.2	3.1	119	278
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		50.0	0.0	7.2	7.2	0.0	0.0	85.8	46.2	1.8	48.0	14.4	560	1,307
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		118.6	0.0		0.0	0.0	0.0	0.0	23.1	0.9	24.0	7.2	280	654
Total		35.1			588.7	945.9	357.2				541.3	541.3	0.0	47.4	152.6	152.6	252.0	404.6	121.4	4,722	11,017

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

* Closed drainage indicates no runoff from this area. All moisture that is not taken up by evapotranspiration ultimately recharges: corrections have been made as explained on summary sheet.

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Pervious Area Infiltration Factor (MECP Table 3.1) = 0.70 Runoff Factor (Corrected for Imperviousness) = 0.30
- Evapotranspiration Factor for Impervious Surfaces = 0.34

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	301 - Southgate Extension	Soil Type:	Sand
		Vegetation:	Shallow-Rooted
Contributing Area =	0.39 ha	Root Zone Depth $(m) =$	0.50
Percent Impervious =	40.0%	Soil Moisture Retention Capacity (mm) =	50
Weather Station :	Fergus Shand Dam		50

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0		0.0	0.0	0.0	0.0	13.8	0.4	14.3	5.7	22	33
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		242.4	0.0		0.0	0.0	0.0	0.0	6.9	0.2	7.1	2.9	11	17
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0		0.0	0.0	0.0	0.0	3.5	0.2	3.7	1.5	6	9
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	30.2	22.2	8.0	8.0	51.9	27.7	25.2	52.9	21.2	82	124
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		50.0	0.0	76.2	56.0	20.2	20.2	30.9	29.3	113.4	142.7	57.1	223	334
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	27.6	-22.4	106.2	78.1	28.1	34.1	28.1	28.7	56.7	85.4	34.2	133	200
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	11.0	-16.6	105.8	77.8	28.0	54.8	28.0	28.4	28.4	56.7	22.7	88	133
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	7.0	-4.0	100.6	74.0	26.6	41.2	26.6	27.5	14.2	41.7	16.7	65	98
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		22.1	15.1	78.0	57.3	20.7	20.7	20.7	24.1	7.1	31.2	12.5	49	73
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	27.9	37.1	27.2	9.8	9.8	22.1	23.1	3.5	26.6	10.6	42	62
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		50.0	0.0	7.2	5.3	1.9	1.9	87.7	55.4	1.8	57.2	22.9	89	134
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		118.6	0.0		0.0	0.0	0.0	0.0	27.7	0.9	28.6	11.4	45	67
Total		35.1			588.7	945.9	357.2				541.3	398.0	143.3	190.7	295.9	296.0	252.0	547.9	219.2	855	1,282

Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Runoff Factor (provided by AECOM) = 0.40
- Evapotranspiration Factor for Impervious Surfaces = 0.34

POST-DEVELOPMENT CONDITIONS

	· · - · · -		
Contributing Catchments:	302 - Southgate Extension	Soil Type:	Sand
		Vegetation:	Shallow-Rooted
Contributing Area =	1.25 ha	Root Zone Depth $(m) =$	0.50
Percent Impervious =	40.0%	Soil Moisture Retention Capacity (mm) =	50
Weather Station :	Fergus Shand Dam		50

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0		0.0	0.0	0.0	0.0	13.8	0.4	14.3	5.7	71	107
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		242.4	0.0		0.0	0.0	0.0	0.0	6.9	0.2	7.1	2.9	36	54
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0		0.0	0.0	0.0	0.0	3.5	0.2	3.7	1.5	18	27
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	30.2	22.2	8.0	8.0	51.9	27.6	25.2	52.8	21.1	264	396
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		50.0	0.0	76.2	56.0	20.2	20.2	30.9	29.2	113.4	142.6	57.1	713	1,070
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	27.6	-22.4	106.2	78.1	28.1	34.1	28.1	28.7	56.7	85.4	34.1	427	640
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	11.0	-16.6	105.8	77.8	28.0	54.8	28.0	28.3	28.4	56.7	22.7	283	425
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	7.0	-4.0	100.6	74.0	26.6	41.2	26.6	27.5	14.2	41.7	16.7	208	312
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		22.1	15.1	78.0	57.3	20.7	20.7	20.7	24.1	7.1	31.2	12.5	156	234
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	27.9	37.1	27.2	9.8	9.8	22.1	23.1	3.5	26.6	10.6	133	200
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		50.0	0.0	7.2	5.3	1.9	1.9	87.7	55.4	1.8	57.2	22.9	286	429
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		118.6	0.0		0.0	0.0	0.0	0.0	27.7	0.9	28.6	11.4	143	214
Total		35.1			588.7	945.9	357.2				541.3	398.0	143.3	190.7	295.9	295.8	252.0	547.7	219.1	2,739	4,108

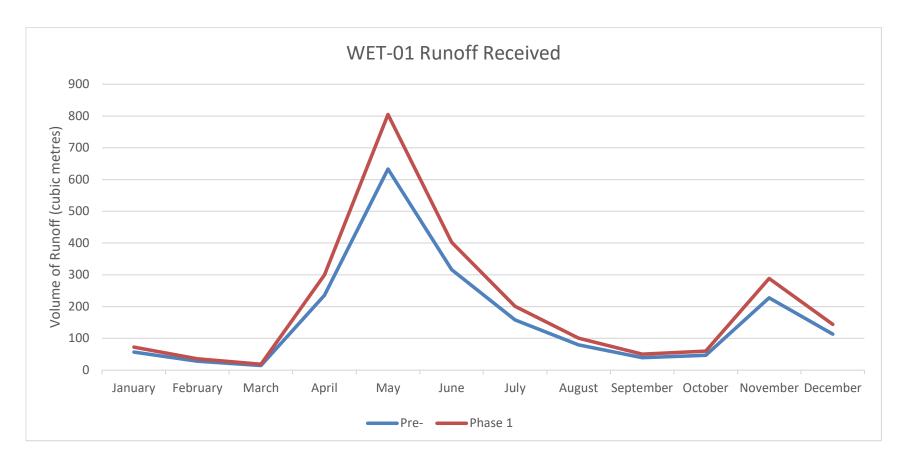
Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)

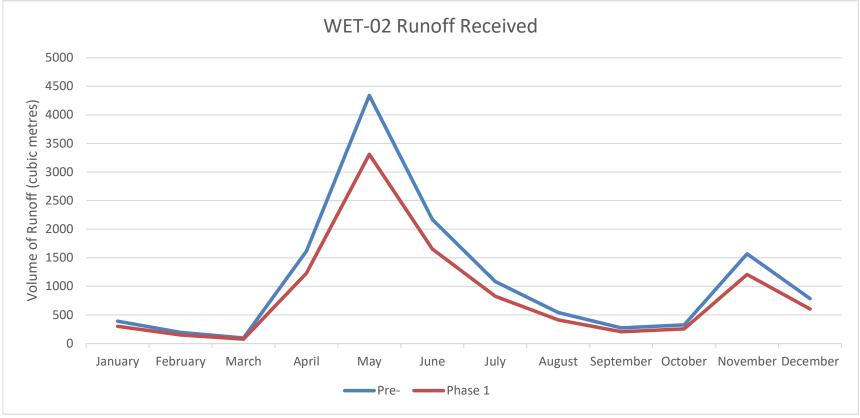
384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

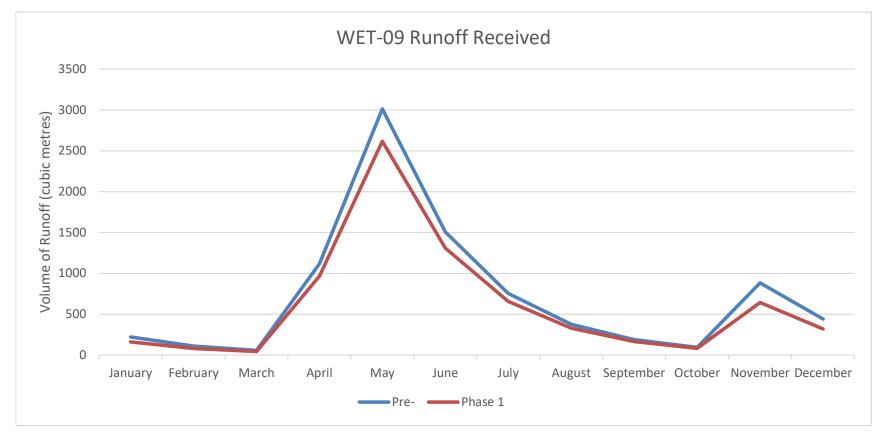
- Runoff Factor (provided by AECOM) = 0.40
- Evapotranspiration Factor for Impervious Surfaces = 0.34

POST-DEVELOPMENT CONDITIONS

	· · - · · -		
Contributing Catchments:	303 - Southgate Extension	Soil Type:	Sand
		Vegetation:	Shallow-Rooted
Contributing Area =	0.47 ha	Root Zone Depth $(m) =$	0.50
Percent Impervious =	40.0%	Soil Moisture Retention Capacity (mm) =	50
Weather Station :	Fergus Shand Dam		50

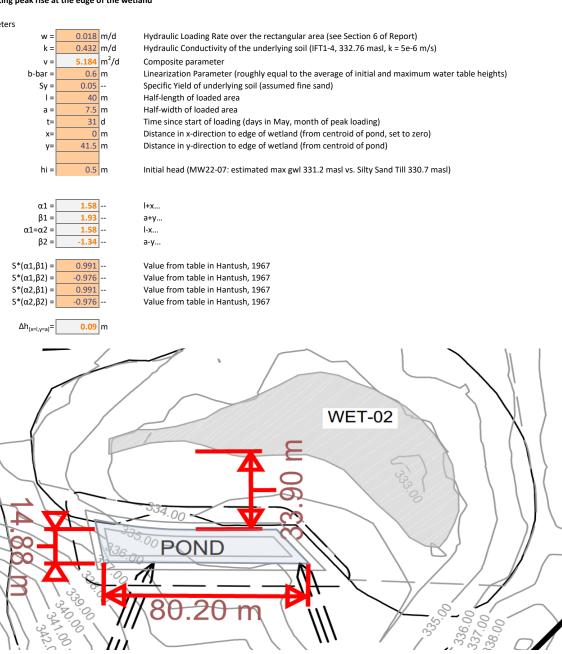

Month	Daily Average Temperature	Monthly Heat Index (I)	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET		Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff	Total Recharge and Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0		0.0	0.0	0.0	0.0	13.8	0.4	14.3	5.7	27	40
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9		242.4	0.0		0.0	0.0	0.0	0.0	6.9	0.2	7.1	2.9	13	20
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0		0.0	0.0	0.0	0.0	3.5	0.2	3.7	1.5	7	10
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	30.2	22.2	8.0	8.0	51.9	27.7	25.2	52.9	21.1	99	149
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7		50.0	0.0	76.2	56.0	20.2	20.2	30.9	29.3	113.4	142.7	57.1	268	402
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	27.6	-22.4	106.2	78.1	28.1	34.1	28.1	28.7	56.7	85.4	34.2	161	241
Jul	20.0	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	11.0	-16.6	105.8	77.8	28.0	54.8	28.0	28.4	28.4	56.7	22.7	107	160
Aug	19.0	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	7.0	-4.0	100.6	74.0	26.6	41.2	26.6	27.5	14.2	41.7	16.7	78	118
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		22.1	15.1	78.0	57.3	20.7	20.7	20.7	24.1	7.1	31.2	12.5	59	88
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	27.9	37.1	27.2	9.8	9.8	22.1	23.1	3.5	26.6	10.6	50	75
Nov	2.1	0.3	0.3	24.0	7.2	93.0	85.8		50.0	0.0	7.2	5.3	1.9	1.9	87.7	55.4	1.8	57.2	22.9	107	161
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6		118.6	0.0		0.0	0.0	0.0	0.0	27.7	0.9	28.6	11.4	54	81
Total		35.1			588.7	945.9	357.2				541.3	398.0	143.3	190.7	295.9	295.9	252.0	547.9	219.2	1,030	1,545


Daily Average Temperature from Fergus Shand Dam Station (Environment Canada, 1981 to 2010)


384 Crawley Road - Site Plan Approval Application (Phase 1) City of Guelph Date: February 2023

- Runoff Factor (provided by AECOM) = 0.40
- Evapotranspiration Factor for Impervious Surfaces = 0.34

APPENDIX H3: WATER BALANCE RESULTS – PLOTS OF MONTHLY VARIATION IN RUNOFF RECEIVED BY SELECT WETLANDS


APPENDIX I: GROUNDWATER MOUNDING CALCULATIONS

GROUNDWATER MOUNDING CALCULATION

Hantush (1967)

Infiltration Basin CENTRAL SWMP - Using infiltration test data for fine sand and silt Estimating peak rise at the edge of the wetland

